Skip to main content
Log in

Non-flying and flying macroinvertebrates show similar beta diversity patterns caused by different factors at two spatial scales in Amazon streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We evaluated the beta diversity patterns of aquatic macroinvertebrate assemblages at two spatial scales in streams in the Eastern Amazon, as well as tested whether environmental and spatial factors affected these assemblage patterns differently for non-flying (i.e., shrimps) and flying (i.e., insects) macroinvertebrate groups. Fifteen streams were sampled, focusing on two hierarchical spatial levels: sampling units (length: five meters) and stream sites (length: 150 m). We additively partitioned gamma diversity to test the relative importance of each spatial level to regional diversity. The total beta diversity at each spatial level was decomposed into the components of replacement and abundance difference. To test whether there was an effect of spatial distances and environmental variables on the dissimilarity matrices, we used multiple regression on distance matrices (MRM). Our results showed that: (1) In both macroinvertebrate groups, alpha diversity contributed less than beta diversity, and dissimilarity between stream sites presented a greater contribution to gamma diversity; (2) the decomposition of beta diversity showed similar patterns in both groups and between the two spatial levels, with a greater contribution of abundance difference than replacement; and (3) the MRM models showed that only environmental distance was important to explain beta diversity of insects, while for shrimps both environmental and spatial distances were significant. We conclude that different ecological processes and environmental variables were important to explain the distributions of insects and shrimps, which is probably related to the different dispersal modes and environmental niche requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available because it is still being used by other partners of the project, but are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Almeida SS, Lisboa PLB, Silva ASL (1993) Diversidade florística de uma comunidade arbórea na Estação Científica Ferreira Penna, Caxiuanã, Pará. Boletim Museu Paraense Emílio Goeldi Série Botânica 9:99–105

    Google Scholar 

  • Altermatt F (2013) Diversity in riverine metacommunities: a network perspective. Aquat Ecol 47:365–377

    Article  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Barreto CC (1999) Heterogeneidade espacial do habitat e diversidade específica: implicações ecológicas e métodos de mensuração. Oecol Brasil 7:121–153

    Article  Google Scholar 

  • Barwell LJ, Isaac NJ, Kunin WE (2015) Measuring β-diversity with species abundance data. J Anim Ecol 84:1112–1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Behling H, da Costa ML (2000) Holocene environmental changes from the Rio Curuá record in the Caxiuanã region, eastern Amazon Basin. Quater Res 53:369–377

    Article  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991

    Article  PubMed  Google Scholar 

  • Benone NL, Ligeiro R, Juen L, Montag LFA (2018) Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Mar Fresh Res 69:243

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bobeldyk AM, Ramírez A (2007) Leaf breakdown in a tropical headwater stream (Puerto Rico): the role of freshwater shrimps and detritivorous insects. J Fresh Ecol 22:581–590

    Article  CAS  Google Scholar 

  • Bryce SA, Lomnicky GA, Kaufmann PR (2010) Protecting sediment-sensitive species in mountain streams through the application of biologically based streambed criteria. J North Am Benthol Soc 29:657–672

    Article  Google Scholar 

  • Bunn SE, Hughes JM (1997) Dispersal and recruitment in streams: evidence from genetic studies. J North Am Benthol Soc 16:338–346

    Article  Google Scholar 

  • Callisto M, Alves CBM, Lopes JM, Castro MA (2014) Condições ecológicas em bacias hidrográficas de empreendimentos hidrelétricos. CEMIG

    Google Scholar 

  • Cardoso P, Rigal F, Carvalho JC (2015) BAT—Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Method Ecol Evol 6:232–236

    Article  Google Scholar 

  • Carvalho JC, Cardoso P, Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob Ecol Biogeogr 21:760–771

    Article  Google Scholar 

  • Cassey P, Lockwood JL, Olden JD, Blackburn TM (2008) The varying role of population abundance in structuring indices of biotic homogenization. J Biogeogr 35:884–892

    Article  Google Scholar 

  • Ceneviva-Bastos M, Prates DB, de Mei RR, Bispo PC, Casatti L (2017) Trophic guilds of EPT (Ephemeroptera, Plecoptera, and Trichoptera) in three basins of the Brazilian Savanna. Limnologica-Ecol Manag Inland Waters 63:11–17

    Article  Google Scholar 

  • Costa SS, Melo AS (2008) Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598:131–138

    Article  Google Scholar 

  • Costa RF, da Silva VDP, Ruivo ML, Meir P, Costa AC, Malhi YS, Grace J (2007) Transpiração em espécie de grande porte na Floresta Nacional de Caxiuanã, Pará transpiration in large size species in caxiuanã national forest, in the State of Pará, Brazil. Rev Brasil Eng Agrícola e Ambiental-Agri 11:180–189

    Article  Google Scholar 

  • Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems. Zoobenthic species influence energy flows and nutrient cycling. Biosci 49:119–127

    Article  Google Scholar 

  • Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of a, b, and c diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Crowl TA, Covich AP (1994) Responses of a freshwater shrimp to chemical and tactile stimuli from a large decapod predator. J North Am Benthol Soc 13:291–298

    Article  Google Scholar 

  • Crowl TA, McDowell WH, Covich AP, Johnson SL (2001) Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82:775

    Article  Google Scholar 

  • Csercsa A et al (2019) Seasonal changes in relative contribution of environmental control and spatial structuring on different dispersal groups of stream macroinvertebrates. Hydrobiologia 828:101–115

    Article  Google Scholar 

  • Cunha EJ, Juen L (2020) Environmental drivers of the metacommunity structure of insects on the surface of tropical streams of the Amazon. Austral Ecol 12:586–595

    Article  Google Scholar 

  • Da Amazônia-Sudam SDD (1984) Atlas climatológico da Amazônia Brasileira. Sudam

    Google Scholar 

  • De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Van Wichelen J (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    Article  PubMed  Google Scholar 

  • de Faria APJ, Ligeiro R, Callisto M, Juen L (2017) Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia 802:39–51

    Article  Google Scholar 

  • Domínguez E, Molineri C, Nieto C (2009) Ephemeroptera. In: Domínguez E, Fernández HR (eds) Macroinvertebrados bentônicos sudamericanos – Sistemática y biologia. Fundación Miguel Lillo, p 55

    Google Scholar 

  • Ferreira WR, Hepp LU, Ligeiro R, Macedo DR, Hughes RM, Kaufmann PR, Callisto M (2017) Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecol Indic 72:365–373

    Article  Google Scholar 

  • Finn DS, Poff NL (2005) Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshw Biol 50:243–261

    Article  Google Scholar 

  • García-Girón J, Heino J, García-Criado F, Fernández-Aláez C, Alahuhta J (2020) Biotic interactions hold the key to understanding metacommunity organisation. Ecography 43:1180–1190

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada N, Couceiro SRM (2003) An illustrated key to nymphs of Perlidae (Insecta, Plecoptera) genera in Central Amazonia, Brazil. Rev Br Entomol 47:477–480

    Article  Google Scholar 

  • Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722

    Article  Google Scholar 

  • Heino J (2013) Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171:971–980

    Article  PubMed  Google Scholar 

  • Heino J, Peckarsky BL (2014) Integrating behavioral, population and large-scale approaches for understanding stream insect communities. Curr Opin Insect Sci 2:7–13

    Article  PubMed  Google Scholar 

  • Heino J, Melo AS, Bini LM (2015a) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235

    Article  Google Scholar 

  • Heino J, Melo AS, Siqueira T, Soininen S, Valanko S, Bini LM (2015b) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869

    Article  Google Scholar 

  • Heino J, Melo AS, Jyrkänkallio-Mikkola J, Petsch DK, Saito VS, Tolonen KT, Siqueira T (2018) Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. J Biogeogr 45:1983–1993

    Article  Google Scholar 

  • Henderson PA, Walker I (1986) On the leaf litter community of the Amazonian blackwater stream Tarumazinho. J Tropical Ecol 2:1–16

    Article  Google Scholar 

  • Hepp LU, Melo AS (2013) Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703:239–246

    Article  Google Scholar 

  • Hepp LU, Landeiro VL, Melo AS (2012) Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. Int Rev Hydrobiol 97:157–167

    Article  Google Scholar 

  • Holomuzki JR, Messier SH (1993) Habitat selection by the stream mayfly Paraleptophlebia guttata. J North Am Benthol Soc 12:126–135

    Article  Google Scholar 

  • Hughes JM, Huey JA, McLean AJ, Baggiano O (2011) Aquatic insects in eastern Australia: a window on ecology and evolution of dispersal in streams. Insects 2:447–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunte W (1979) The complete larval development of the freshwater shrimp Atya innocous (Herbst) reared in the laboratory (Decapoda, Atyidae). Crustaceana. Supplement pp 231–242

  • Hynes HBN (1970) The ecology of stream insects. Annu Rev Entomol 15:25–42

    Article  Google Scholar 

  • Jähnig SC, Lorenz AW (2008) Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquat Sci 70:292–303

    Article  Google Scholar 

  • Johnson LB, Breneman BH, Richards C (2003) Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Res Appl 19:199–218

    Article  Google Scholar 

  • Lancaster J, Downes BJ (2013) Aquatic entomology. Oxford Univiersity Press

    Book  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Landeiro VL, Magnusson WE, Melo AS, Espírito-Santo HM, Bini LM (2011) Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192

    Article  Google Scholar 

  • Landeiro VL, Bini LM, Melo AS, Pes AMO, Magnusson WE (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564

    Article  Google Scholar 

  • Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23:1324–1334

    Article  Google Scholar 

  • Leibold MA, Chase JM (2018) Metacommunity patterns in space. Metacommunity Ecol

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press

    Book  Google Scholar 

  • Li Z, Wang J, Meng X, Heino J, Sun M, Jiang X, Xie Z (2019) Disentangling the effects of dispersal mode on the assembly of macroinvertebrate communities in a heterogeneous highland region. Freshw Sci 38:170–182

    Article  Google Scholar 

  • Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131

    Article  Google Scholar 

  • Ligeiro R, Melo AS, Callisto M (2010) Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshw Biol 55:424–435

    Article  Google Scholar 

  • Ligeiro R, Hughes RM, Kaufmann PR, Heino J, Melo AS, Callisto M (2020) Choice of field and laboratory methods affects the detection of anthropogenic disturbances using stream macroinvertebrate assemblages. Ecol Indic 115:106382

    Article  Google Scholar 

  • Lisboa PLB (1997) A Estação Científica Ferreira Penna/ECFPn. In: Lisboa PLB (eds.) Caxiuanã, Museu Paraense Emílio Goeldi, Belém, pp 23–49

  • MacArthur RH (1984) Geographical ecology: patterns in the distribution of species. Princeton University Press

    Google Scholar 

  • MacArthur R, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:318–332

    Article  Google Scholar 

  • MacNeale KH, Peckarsky BL, Likens GE (2005) Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw Biol 50:1117–1130

    Article  Google Scholar 

  • Melo GAS (2003) Manual de identificação dos Crustacea Decápoda de água doce do Brasil. Edições Loyola

    Google Scholar 

  • Milesi SV, Dolédec S, Melo AS (2016) Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshw Sci 35:1321–1329

    Article  Google Scholar 

  • Montag LF, Leão H, Benone NL, Monteiro-Júnior CS, Faria APJ, Nicacio G, Winemiller KO (2019) Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia 826:263–277

    Article  CAS  Google Scholar 

  • Moya N, Hughes RM, Domínguez E, Gibon FM, Goitia E, Oberdorff T (2011) Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecol Indic 11:840–847

    Article  Google Scholar 

  • Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159

    Article  Google Scholar 

  • Nakajima T, Asaeda T, Fujino T, Nanda A (2006) Coarse particulate organic matter distribution in the pools and riffles of a second-order stream. Hydrobiologia 559:275–283

    Article  Google Scholar 

  • Nicacio G, Cunha EJ, Hamada N, Juen L (2020) How habitat filtering can affect taxonomic and functional composition of aquatic insect communities in small Amazonian Streams. Neotrop Entomol 49:652–661

    Article  CAS  PubMed  Google Scholar 

  • O’connor NA (1991) The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85:504–512

    Article  CAS  PubMed  Google Scholar 

  • Olifiers MH, Dorvillé LFM, Nessimian JL, Hamada N (2004) A key to Brazilian genera of Plecoptera (Insecta) based on Nymphs. Zootaxa 651:1–15

    Article  Google Scholar 

  • Padial AA, Ceschin F, Declerck SA, De Meester L, Bonecker CC, Lansac-Tôha FA, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:10

    Article  CAS  Google Scholar 

  • Palmer MA, Allan JD, Butman CA (1996) Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends Ecol Evol 11:322–326

    Article  CAS  PubMed  Google Scholar 

  • Pes AMO, Hamada N, Nessimian JL (2005) Chaves de identificação de larvas para famíliase gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Rev Br Entomol 49:181–2014

    Article  Google Scholar 

  • Petersen I, Masters Z, Hildrew AG, Ormerod SJ (2004) Ltd Dispersal of adult aquatic insects in catchments of differing land use. Jappl Ecol 41:934–950

    Article  Google Scholar 

  • Pilotto F, Harvey GL, Wharton G, Pusch MT (2016) Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers. Aquat Sci 78:755–766

    Article  CAS  Google Scholar 

  • Podani J, Ricotta C, Schmera D (2013) A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecol Complex 15:52–61

    Article  Google Scholar 

  • Poff NL (1997) Landscapes filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Pringle CM, Blake GA, Covich AP, Buzby KM, Findley A (1993) Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understorey algal biomass. Oecologia 93:1–11

    Article  PubMed  Google Scholar 

  • Rader RB, Unmack PJ, Christensen WF, Jiang X (2019) Connectivity of two species with contrasting dispersal abilities: a test of the isolated tributary hypothesis. Freshw Sci 38:142–155

    Article  Google Scholar 

  • Ruzicka M (1958) Anwendung mathematisch-statisticher methoden in der geobotanik (Synthetische bearbeitung von aufnahmen). Biol Br 13:647–661

    Google Scholar 

  • Saito VS, Perkins DM, Kratina P (2021) A metabolic perspective of stochastic community assembly. Trends Eecol Evol 1:1–1

    Google Scholar 

  • Salles FF (2006) A ordem Ephemeroptera no Brasil (Insecta): taxonomia e diversidade. Universidade Federal de Viçosa

    Google Scholar 

  • Salles FF, Domíngues E (2012) Systematics and phylogeny of ulmeritus-ulmeritoides revisited (Ephemeroptera: Leptophlebiidae). Zootaxa 3571:49–65

    Article  Google Scholar 

  • Samways MJ, Osborn R, Van Heerden I (1996) Distribution of benthic invertebrates at different depths in a shallow reservoir in the Kwa Zulu-Natal Midlands. Koedoe 39:69–76

    Article  Google Scholar 

  • Scealy JA, Mika SJ, Boulton AJ (2007) Aquatic macroinvertebrate communities on wood in an Australian lowland river: experimental assessment of the interactions of habitat, substrate complexity and retained organic matter. Mar Freshw Res 58:153–165

    Article  Google Scholar 

  • Soininen J, Korhonen JJ, Karhu J, Vetterli A (2011) Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnol Oceanogr 56:508–520

    Article  Google Scholar 

  • Soininen J, Heino J, Wang J (2018) A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob Ecol Biogeogr 27:96–109

    Article  Google Scholar 

  • Terlizzi A, Anderson MJ, Bevilacqua S, Fraschetti S, Ellingsen W-K (2009) Beta diversity and taxonomic sufficiency: do higher-level taxa reflect heterogeneity in species composition. Divers Distrib 15:450–458

    Article  Google Scholar 

  • Timm T (1994) Reasons for the shift in dominance between Simulium vernum and Simulium ornatum (Diptera, Simuliidae) along the continuum of an unpolluted lowland stream. Arch Hydrobiol 131:199–210

    Article  Google Scholar 

  • Tonkin JD, Altermatt F, Finn DS, Heino J, Olden JD, Lytle PSU (2018a) The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw Biol 63:141–163

    Article  Google Scholar 

  • Tonkin JD, Heino J, Altermatt F (2018b) Metacommunities in river networks: the importance of network structure and connectivity on patterns and processes. Freshwr Biol 63:1–5

    Article  Google Scholar 

  • Uno H, Power ME (2015) Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network. Ecol Lett 18:1012–1020

    Article  PubMed  Google Scholar 

  • Veech JA, Crist TO (2007) PARTITION: Software for hierarchical additive partitioning of species diversity. Version 2.0. http://www.users.muohio.edu/cristto/partition.htm. Accessed 28 July 2019

    Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Viana DS, Chase JM (2019) Spatial scale modulates the inference of metacommunity assembly processes. Ecology 100:e02576

    Article  PubMed  Google Scholar 

  • Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography 26:751–767

    Article  Google Scholar 

  • Whittaker RH (1960) vegetation of the siskiyou mountains, oregon and California. Ecol Monographs 30:279–338

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Willis KJ, Whittaker JR (2002) Species diversity–scale matters. Science 295:1245–1248

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn MJ (2003) Habitat segregation and nymphal life history of two Nesameletus species (Ephemeroptera: Nesameletidae) in a mountain stream. Aquat Insects 25:41–50

    Article  Google Scholar 

  • Wright JP, Flecker AS (2004) Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biol Conserv 120:443–451

    Article  Google Scholar 

  • Wu J, Loucks LO (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quart Rev Biol 70:439–466

    Article  Google Scholar 

  • Zografou K, Wilson RJ, Halley JM, Tzirkalli E, Kati V (2017) How are arthopod communities structured and why are they so diverse? Answers from mediterranean mountains using hierarchical additive partitioning. Biodiv Conserv 26:1333–1351

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Aquatic Invertebrate Lab of the Museu Paraense Emilio Goeldi, especially to Dra. Daiane Aviz, for helping in the identification of decapods. We would also like to thank all graduate students involved in the sampling, sorting and identification of biological material. MSc. Naiara Raiol provided technical support in the elaboration of the modeling of river distances.

Funding

“Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) financed the field sampling (Edital Universal MCTI/CNPQ No 14/2014, Proc. 461032/2014-7). “Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) financed the Postgraduate scholarship of Alexandre Sampaio de Siqueira. Raphael Ligeiro received grants from CAPES/PROCAD–Amazônia 2018 (Proc. Núm.:88887.200518/2018-00).

Author information

Authors and Affiliations

Authors

Contributions

ASS- conception and design of the study, data processing analysis and interpretation, drafting the manuscript; SMB- critical review and interpretation; CRMS- obtained data, species identification and critical review; JH- design of the study data processing analysis and interpretation; RL-conception and design of the study, data processing analysis and interpretation, drafting the manuscript.

Corresponding author

Correspondence to Alexandre Sampaio de Siqueira.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Siqueira, A.S., Boschilia, S.M., dos Santos, C.R.M. et al. Non-flying and flying macroinvertebrates show similar beta diversity patterns caused by different factors at two spatial scales in Amazon streams. Aquat Sci 83, 62 (2021). https://doi.org/10.1007/s00027-021-00816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-021-00816-5

Keywords

Navigation