Skip to main content

Advertisement

Log in

Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

This study investigates the potential of bioturbating Tubificidae to alter biogeochemical processes by sediment aeration in order to enhance ecosystem development in eco-engineering projects. We introduced Tubificidae in three different densities (5000, 15,000, and 30,000 individuals m−2) in clay-rich sediment from lake Markermeer (The Netherlands). Redox potential, nutrients and major elements were measured from the water column and porewater at different depths. Mineral phase and redox transfers were chemically modelled and oxygen concentrations in bioturbated sediments for each density were mathematically predicted. The measured results of this experiment showed that Tubificidae oxygenated the upper 15 mm of the sediment. This resulted in decomposition of sedimentary organic matter with an associated sixfold increase in NH4 and NOx concentrations in the porewater and the water column. However, phosphorus concentrations were declining in the upper 16 mm, likely as a result of immobilization by pyrite oxidation and production of iron oxides. These bioturbation effects were highest in the treatment with an intermediate density of Tubificidae (15,000 worms m−2) as aeration effects in the treatment with the highest density of Tubificidae (30,000 worms m−2) was impeded by high respiration rates. Furthermore, with a two dimensional diffusion model, simulated effects of respiration and aeration on the oxygen concentration in the sediment suggest that the bioturbation effect is strongest at a density of 12,000 worms m−2. In ecological engineering projects where fast ecosystem development is important, introducing Tubificidae to aquatic sediments to optimal densities might enhance initial ecosystem development due to improved availability of nitrogen as nutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anschutz P, Ciutat A, Lecroart P, Gérino M, Boudou A (2012) Effects of Tubificid worm bioturbation on freshwater sediment biogeochemistry. Aquat Geochem 18:475–497

    Article  CAS  Google Scholar 

  • Callender E, Hammond DE (1982) Nutrient exchange across the sediment–water interface in the Potomac River estuary. Estuar Coast Shelf Sci 15:395–413

    Article  CAS  Google Scholar 

  • De Lucas Pardo MA (2014) Effect of biota on fine sediment transport processes. A study of lake Markermeer. Ph.D. dissertation, Delft University

  • De Lucas Pardo MA, Bakker M, Van Kessel T, Cozzoli F, Winterwerp JC (2013) Erodibility of soft freshwater sediments in Markermeer: the role of bioturbation by meiobenthic fauna. Ocean Dyn 63:1137–1150

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky GV, Mateu Figueras F, Barceló Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300

    Article  Google Scholar 

  • Fillos J, Swanson WR (1975) The release rate of nutrients from river and lake sediments. Water Pollut Control Fed J 47:1032–1042

    CAS  Google Scholar 

  • Filzmoser P, Hron K, Reimann C, Garret RG (2009) Robust factor analysis for compositional data. Comput Geosci 35:1854–1861

    Article  Google Scholar 

  • Fisher B, Lick WJ, McCall PL, Robbins JA (1980) Vertical mixing of lake sediments by tubificid oligochaetes. J Geophys Res 85:3997–4006

    Article  Google Scholar 

  • Fowler DJ, Goodnight CJ (1965) The effect of environmental factors on the respiration of Tubifex. Am Midl Nat 74:418–428

    Article  Google Scholar 

  • Griffioen J (2006) Extent of immobilization of phosphate during aeration of nutrient-rich, anoxic groundwater. J Hydrol 320:359–369

    Article  CAS  Google Scholar 

  • Han P, Bartels DM (1996) Temperature dependence of oxygen diffusion in H2O and D2O. J Phys Chem 100:5597–5602

    Article  CAS  Google Scholar 

  • Hansen K, Kristensen E (1997) Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuar Coast Shelf Sci 45:613–628

    Article  CAS  Google Scholar 

  • Helder W, De Vries RTP (1979) An automatic phenol-hypochlorite method for the determination of ammonia in sea- and brackish waters. Neth J Sea Res 13:154–160

    Article  CAS  Google Scholar 

  • Iversen N, Jørgensen BB (1993) Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochim Cosmochim Acta 57:571–578

    Article  CAS  Google Scholar 

  • Kitson RE, Mellon MG (1944) Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Ind Eng Chem Anal Ed 16:379–383

    Article  CAS  Google Scholar 

  • Krantzberg G (1985) The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environ Pollut 39:99–122

    Article  CAS  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  CAS  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  • Lagauzère S, Moreira S, Koschorreck M (2011) Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake. Biogeosciences 8:339–352

    Article  Google Scholar 

  • Lobet G, Pagès L, Draye X (2011) A novel image analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    Article  CAS  Google Scholar 

  • Lou J, Cao Y, Sun P, Zeng P (2013) The effects of operational conditions on the respiration rate of Tubificidae. PLoS One 8:1–9

    Google Scholar 

  • Luedecke C, Hermanewicz SW, Jenkins D (1989) Precipitation of ferric phosphate in activated sludge: a chemical model and its verification. Water Sci Technol 21:325–337

    Article  CAS  Google Scholar 

  • Martin P, Boes X, Goddeeris B, Fagel N (2005) A qualitative assessment of the influence of bioturbation in Lake Baikal sediments. Glob Planet Change 46:87–99

    Article  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68:434–442

    Article  CAS  Google Scholar 

  • Ministry of Infrastructure and the Environment (2017) Watergegevens Rijkswaterstaat. http://watergegevens.rws.nl/. Accessed 11 Oct 2017

  • Mitsch WJ (1998) Ecological engineering—the 7-year itch. Ecol Eng 10:119–130

    Article  Google Scholar 

  • Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142

    Article  Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer–substrate interaction. Oecologia 161:125–138

    Article  Google Scholar 

  • Noordhuis R, Groot S, Dionisio Pires M, Maarse M (2014) Wetenschappelijk eindadvies ANT-IJsselmeergebied. Vijf jaar studie naar kansen voor het ecosysteem van het IJsselmeer, Markermeer en IJmeer met het oog op de Natura-2000 doelen. Deltares report 1207767-000

  • Oates BR (1985) Photosynthesis and amelioration of desiccation in the intertidal saccate alga Colpomenia peregrina. Mar Biol 89:109–119

    Article  Google Scholar 

  • Odum HT, Odum B (2003) Concepts and methods of ecological engineering. Ecol Eng 20:339–361

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Denver

    Book  Google Scholar 

  • Pelegri SP, Blackburn TH (1995) Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquat Microbiol Ecol 9:289–294

    Article  Google Scholar 

  • Rogaar H (1980) The morphology of burrow structures made by Tubificids. Hydrobiologia 71:107–124

    Article  Google Scholar 

  • Ruginis T, Bartoli M, Petkuviene J, Zilius M, Lubiene I, Laini A, Rainkovas-Baziukas A (2014) Benthic respiration and stoichiometry of regenerated nutrients in lake sediments with Dreissena polymorpha. Aquat Sci 76:405–417

    Article  CAS  Google Scholar 

  • Saaltink RM, Dekker SC, Griffioen J, Wassen MJ (2016) Wetland eco-engineering: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material. Biogeosciences 13:4945–4957

    Article  Google Scholar 

  • Saaltink RM, Dekker SC, Eppinga MB, Griffioen J, Wassen MJ (2017) Plant-specific effects of iron toxicity in wetlands. Plant Soil 416:83–96

    Article  CAS  Google Scholar 

  • Saaltink RM, Dekker SC, Griffioen J, Wassen MJ (2018) Vegetation growth and sediment dynamics in a created freshwater wetland. Ecol Eng 111:11–21

    Article  Google Scholar 

  • Sanford LP (2008) Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Comput Geosci 34:1263–1283

    Article  Google Scholar 

  • Schaller J (2014) Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere 107:336–343

    Article  CAS  Google Scholar 

  • Scicluna TR, Woodland RJ, Zhu Y, Grace MR, Cook PLM (2015) Deep dynamic pools of phosphorus in the sediment of a temperate lagoon with recurring blooms of diazotrophic cyanobacteria. Limnol Oceanogr 60:2185–2196

    Article  CAS  Google Scholar 

  • Svensson JM, Leonardsson L (1996) Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and denitrification in eutrophic lake sediments. Freshw Biol 35:289–300

    Article  Google Scholar 

  • Svensson JM, Enrich-Prast A, Leonardson L (2001) Nitrification and denitrification in a Eutrophic Lake sediment bioturbated by oligochaetes. Aquat Microb Ecol 23:177–186

    Article  Google Scholar 

  • Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, de Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504:79–83

    Article  CAS  Google Scholar 

  • Turner CB (2010) Influence of zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis) mussel invasions on benthic nutrient and oxygen dynamics. Can J Fish Aquat Sci 67:1899–1908

    Article  CAS  Google Scholar 

  • Ullman WJ, RC Aller (1981) Diffusion coefficients in nearshore marine sediments. Limnol Oceanogr 27:552–556

    Article  Google Scholar 

  • Van Kessel T, De Boer G, Boderie P (2008) Calibration suspended sediment model Markermeer. Open File Rep 4612:107 pp

    Google Scholar 

  • Van Riel MC, Verdonschot PFM, Dekkers DD (2018) De bodemfauna van het Markermeer. Markermeer bodemfaunakartering 2016 en MWTL-analyse. https://doi.org/10.18174/442521

  • Van de Velde S, Meysman FJR (2016) The influence of bioturbation on iron and sulphur cycling in marine sediments: a model analysis. Aquat Geochem 22:469–504

    Article  Google Scholar 

  • Van der Grift B, Behrends T, Osté LA, Schot PP, Wassen MJ, Griffioen J (2016) Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions. Geochim Cosmochim Acta 186:71–90

    Article  Google Scholar 

  • Vepraskas MJ, Polizzotto M, Faulkner SP (2001) Redox chemistry of hydric soils in wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton

    Google Scholar 

  • Vijverberg T, Winterwerp JC, Aarninkhof SGJ, Drost H (2011) Fine sediment dynamics in a shallow lake and implication for design of hydraulic works. Ocean Dyn 61:187–202

    Article  Google Scholar 

  • Vink JPM (2002) Measurement of heavy metal speciation over redox gradients in natural water–sediment interfaces and implications for uptake by benthic organisms. Environ Sci Technol 36:5130–5138

    Article  CAS  Google Scholar 

  • Vink JPM (2009) The origin of speciation: trace metal kinetics and bioaccumulation by oligochaetes and chironomids in undisturbed water–sediment interfaces. Environ Pollut 157:519–527

    Article  CAS  Google Scholar 

  • Volkenborn N, Polerecky L, Hedtkamp SIC, van Beusekom JEE, de Beer D (2007) Bioturbation and bioirrigation extend the open exchange regions in permeable sediments. Limnol Oceanogr 52:1898–1909

    Article  CAS  Google Scholar 

  • Walker RA, Hallock P, Torres JJ, Vargo GA (2011) Photosynthesis and respiration in five species of benthic Foraminifera that host algal endosymbionts. J Foramin Res 41:314–325

    Article  Google Scholar 

  • Zhu Y, Hipsey MR, McCowan A, Beardall J, Cook PLM (2016) The role of bioirrigation in sediment phosphorus dynamics and blooms of toxic cyanobacteria in a temperate lagoon. Environ Model Softw 86:277–304

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported with funding from Netherlands Organization for Scientific Research (NWO), Stichting voor de Technische Wetenschappen (project no. 850.13.032) and the companies Deltares, Boskalis and Van Oord. This manuscript was produced with unrestricted freedom to report all results. We would also like to express our thanks to Thom Claessen and John Visser for their help, support and advice during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémon M. Saaltink.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 677 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saaltink, R.M., Honingh, E., Dekker, S.C. et al. Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment. Aquat Sci 81, 13 (2019). https://doi.org/10.1007/s00027-018-0610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-018-0610-3

Keywords

Navigation