Skip to main content
Log in

Novel Efficient Method for Automatic Inversion of Vertical Electrical Sounding Data: Case Study from Sindhudurg District, Maharashtra, India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Estimation of true resistivity and thickness from vertical electrical sounding (VES) data is considered a highly nonlinear geophysical inverse problem. Different local and global optimization methods have been used for the inversion of VES data. The success of local optimization largely depends on the level of noise present in the data and how close the initial selected model parameters are to the true model parameters. Although global optimization is not very sensitive to the selection of initial model parameters, it carries significant computational cost and time. Moreover, a common problem in any global optimization method is the frequent occurrence of premature convergence when the exact position of the global minimum cannot be known a priori in a complex geophysical error surface. To reduce these limitations, we propose a novel method based on the Walsh transform (WT) technique with integration of hybrid optimization for the inversion of VES data. Within the framework, we test Walsh-based selection of initial model parameters individually for local, global, and hybrid optimization. We show how the WT technique combined with the hybrid optimization method can offer an excellent alternative scheme for automatic inversion of VES data. Tests on inversion of synthetic and field VES data demonstrate that the Walsh transform can be very effective in selecting the initial model parameters naturally from the data for rapid and robust inversion of VES data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data used in this research are available in supplementary files.

References

  • Balkaya, Ç. (2013). An implementation of differential evolution algorithm for inversion of geoelectrical data. Journal of Applied Geophysics, 98, 160–175.

    Article  Google Scholar 

  • Balkaya, Ç., Göktürkler, G., Erhan, Z., & Levent Ekinci, Y. (2012). Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole example, Bozdağ, İzmir (western Turkey). Geophysics, 77(3), B135–B146.

    Article  Google Scholar 

  • Balkaya, Ç., Kaya, M. A., & Göktürkler, G. (2009). Delineation of shallow resistivity structure in the city of Burdur, SW Turkey by vertical electrical sounding measurements. Environmental Geology, 57(3), 571–581.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., Adamowski, J., & Fijani, E. (2017). Comparison of machine learning models for predicting fluoride contamination in groundwater. Stochastic Environmental Research and Risk Assessment, 31(10), 2705–2718.

    Article  Google Scholar 

  • Başokur, A. T., Akca, I., & Siyam, N. W. (2007). Hybrid genetic algorithms in view of the evolution theories with application for the electrical sounding method. Geophysical Prospecting, 55(3), 393–406.

    Article  Google Scholar 

  • Bath, M. (1974). Spectral analysis in geophysics: Elsevier Sci. Pubi. Co.

    Google Scholar 

  • Beauchamp, K. G. (1975). Walsh functions and their applications (Vol. 3). Academic Press.

    Google Scholar 

  • Chunduru, R. K., Sen, M. K., & Stoffa, P. L. (1997). Hybrid optimization methods for geophysical inversion. Geophysics, 62(4), 1196–1207.

    Article  Google Scholar 

  • Cui, Y. A., Chen, Z., Zhu, X., Liu, H., & Liu, J. (2017). Sequential and simultaneous joint inversion of resistivity and IP sounding data using particle swarm optimization. Journal of Earth Science, 28(4), 709–718.

    Article  Google Scholar 

  • Das, A., Maiti, S., Naidu, S., & Gupta, G. (2017). Estimation of spatial variability of aquifer parameters from geophysical methods: A case study of Sindhudurg district, Maharashtra, India. Stochastic Environmental Research and Risk Assessment, 31(7), 1709–1726.

    Article  Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43). Ieee.

  • Ekinci, Y. L., & Demirci, A. (2008). A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22), 4070–4078.

    Article  Google Scholar 

  • Elsheikh, A. H., & Abd Elaziz, M. (2019). Review on applications of particle swarm optimization in solar energy systems. International Journal of Environmental Science and Technology, 16(2), 1159–1170.

    Article  Google Scholar 

  • Ferreira, N. R., Porsani, M. J., & Oliveira, S. P. D. (2003). A hybrid genetic-linear algorithm for 2D inversion of sets of vertical electrical sounding. Revista Brasileira De Geofísica, 21(3), 235–248.

    Article  Google Scholar 

  • Flathe, H. (1976). The role of a geologic concept in geophysical research work for solving hydrogeological problems. Geoexploration, 14(3–4), 195–206.

    Article  Google Scholar 

  • Ghosh, D. P. (1971a). The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophysical Prospecting, 19(2), 192–217.

    Article  Google Scholar 

  • Ghosh, D. P. (1971b). Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophysical Prospecting, 19(4), 769–775.

    Article  Google Scholar 

  • Gimmler, J., Stützle, T., & Exner, T. E. (2006). Hybrid particle swarm optimization: An examination of the influence of iterative improvement algorithms on performance. In: International Workshop on Ant Colony Optimization and Swarm Intelligence, pp. 436–443. Springer

  • Hamimu, L., Safani, J. & Ngkoimani, L.O. (2015). Developed forward and inverse modelling of vertical electrical sounding (VES) using MATLAB implementation. International Journal of Science and Research, 4(11), 1592–1597.

    Google Scholar 

  • Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40(5), 798–817.

    Article  Google Scholar 

  • Jardani, A., Revil, A., Akoa, F., Schmutz, M., Florsch, N., & Dupont, J. P. (2006). Least squares inversion of self-potential (SP) data and application to the shallow flow of ground water in sinkholes. Geophysical Research Letters, 33(19), L19306. https://doi.org/10.1029/2006GL027458

    Article  Google Scholar 

  • Karabulut, S., Cengiz, M., Balkaya, Ç., & Aysal, N. (2021). Spatio-temporal variation of seawater intrusion (SWI) inferred from geophysical methods as an ecological indicator; A case study from Dikili, NW Izmir, Turkey. Journal of Applied Geophysics, 189, 104318.

    Article  Google Scholar 

  • Kaya, M. A., Özürlan, G., & Balkaya, Ç. (2015). Geoelectrical investigation of seawater intrusion in the coastal urban area of Çanakkale, NW Turkey. Environmental Earth Sciences, 73(3), 1151–1160.

    Article  Google Scholar 

  • Koefoed, O. (1979). Geosounding principles, 1. Resistivity sounding measurements, Elsevier Science Ltd., 290.

  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168.

    Article  Google Scholar 

  • Maiti, S., Erram, V. C., Gupta, G., & Tiwari, R. K. (2012). ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology, 464, 294–308.

    Article  Google Scholar 

  • Maiti, S., Gupta, G., Erram, V. C., & Tiwari, R. K. (2011). Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach. Nonlinear Processes in Geophysics, 18(2), 179–192.

    Article  Google Scholar 

  • Maiti, S., & Tiwari, R. K. (2005). Automatic detection of lithologic boundaries using the Walsh transform: A case study from the KTB borehole. Computers & Geosciences, 31(8), 949–955.

    Article  Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

    Article  Google Scholar 

  • Massoud, U., Soliman, M., Taha, A., Khozym, A., & Salah, H. (2015). 1D and 3D inversion of VES data to outline a fresh water zone floating over saline water body at the northwestern coast of Egypt. NRIAG Journal of Astronomy and Geophysics, 4(2), 283–292.

    Article  Google Scholar 

  • Meju, M. A. (1994). Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice. Society of Exploration Geophysicists. Course Notes Series, No. 6, S.N. Domenico (Ed.), p. 296.

  • Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic Press.

    Google Scholar 

  • Muiuane, E. A., & Pedersen, L. B. (1999). Automatic 1D interpretation of DC resistivity sounding data. Journal of Applied Geophysics, 42(1), 35–45.

    Article  Google Scholar 

  • Narayan, S., Dusseault, M. B., & Nobes, D. C. (1994). Inversion techniques applied to resistivity inverse problems. Inverse Problems, 10(3), 669.

    Article  Google Scholar 

  • Noel, M. M., & Jannett, T. C. (2004). Simulation of a new hybrid particle swarm optimization algorithm. In: Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the (pp. 150–153). IEEE.

  • Nosakare Ogunbo, J. (2018). MATLAB code for data-driven initial model of 1D Schlumberger sounding curve. Geophysics, 83(2), F21–F28.

    Article  Google Scholar 

  • Ouyang, A., Zhou, Y. and Luo, Q. (2009). Hybrid particle swarm optimization algorithm for solving systems of nonlinear equations. In: 2009 IEEE International Conference on Granular Computing, 460–465.

  • Pal, P. C. (1991). A Walsh sequency filtration method for integrating the resistivity log and sounding data. Geophysics, 56(8), 1259–1266.

    Article  Google Scholar 

  • Parasnis, D. (1986). Principles of applied geophysics (4th ed.). Chapman and Hall.

    Book  Google Scholar 

  • Patella, D. (1975). A numerical computation procedure for the direct interpretation of geoelectrical soundings. Geophysical Prospecting, 23(2), 335–362.

    Article  Google Scholar 

  • Roy, I. G. (1999). An efficient non-linear least-squares 1D inversion scheme for resistivity and IP sounding data. Geophysical Prospecting, 47(4), 527–550.

    Article  Google Scholar 

  • Sen, M. K., Bhattacharya, B. B., & Stoffa, P. L. (1993). Nonlinear inversion of resistivity sounding data. Geophysics, 58(4), 496–507.

    Article  Google Scholar 

  • Siavashi, M., & Yazdani, M. (2018). A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization. Journal of Energy Resources Technology, 140(10), 102903.

    Article  Google Scholar 

  • Tarantola, A. (1987). Inverse problem theory.

    Google Scholar 

  • Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1976). Applied geophysics (p. 860). Cambridge University Press.

    Google Scholar 

  • Tikhonov, A. N., Arsenin, V. I., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. Vh Winston.

  • Van Overmeeren, R. A. (1989). Aquifer boundaries explored by geoelectrical measurements in the coastal plain of Yemen: A case of equivalence. Geophysics, 54(1), 38–48.

    Article  Google Scholar 

  • Zohdy, A. A. (1969). The use of Schlumberger and equatorial soundings in groundwater investigations near El Paso, Texas. Geophysics, 34(5), 713–728.

    Article  Google Scholar 

  • Zohdy, A. A. (1989). A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54(2), 245–253.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Director, IIT (ISM), Dhanbad, for permitting us to publish the work. PKG is grateful to IIT (ISM) for the SRF fellowship. SM acknowledges the partial financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, New Delhi, (Grant No: CRG/2018/001368) and TexMin project (Grant No.PSF-1H-1Y-007) for research and development.

Funding

The research work is done under the partial financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, New Delhi, (Grant No: CRG/2018/001368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Gupta.

Ethics declarations

Conflict of interest

The authors state that there are no interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 92 KB)

Supplementary file2 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.K., Maiti, S. Novel Efficient Method for Automatic Inversion of Vertical Electrical Sounding Data: Case Study from Sindhudurg District, Maharashtra, India. Pure Appl. Geophys. 180, 243–259 (2023). https://doi.org/10.1007/s00024-022-03213-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03213-7

Keywords

Navigation