Skip to main content
Log in

Seismic Hazard Assessment and Its Uncertainty for the Central Part of Northern Algeria

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study presents a probabilistic seismic hazard assessment for the central part of northern Algeria using two complementary seismic models: a fault-based model and a gridded seismicity model. Two ground-motion attenuation equations were chosen using the Pacific Earthquake Engineering Research Center Next-Generation models, as well as local and regional ones. The ranking method was used to assess their ability to gather accurate data. To account for epistemic uncertainty in both components of the assessment, the seismic hazard was computed using a logic tree approach. Expert judgment and data testing were used to evaluate the weights assigned to individual ground-motion prediction equations. The seismic hazard maps depicted the obtained results in terms of spectral accelerations at oscillation periods of 0.0, 0.2, and 1.0 s, with 10% and 5% probabilities of exceedance in 50 years, and for soil types B, B/C, C, and C/D, as defined by the National Earthquake Hazards Reduction Program. From the analysis, the uncertainty is expressed as both a 95% confidence band and the coefficient of variation (COV). Annual frequencies of exceedance and hazard curves were estimated for the selected cities, as well as uniform hazard spectra for the previously quoted probabilities of exceedance and the soil types considered. Peak ground acceleration values of \(0.44\, \pm 0.17\) g and \(0.38\, \pm 0.06\) g were reported for the B/C soil type in the cities of Algiers and Blida, respectively, for a return period of 475 years. Seismic maps for the selected return periods depicting the classification of the estimated values are also displayed in terms of very high, high, medium, low and very low degrees of reliability. Furthermore, a seismic hazard disaggregation analysis in terms of magnitude, distance, and azimuth was carried out. The primary goal of such analyses is to determine the relative contribution of different seismic foci and sources to seismic hazard at specific locations. Thus, for each studied city, for the considered return periods and for the soil type B/C, the so-called control or modal earthquake was estimated. At Algiers, events with magnitudes Mw 5.0–5.5 and distances of less than 10 km contribute the most to the mean seismic hazard over a 475-year period. However, for the same return period, those events with Mw 7.0–7.5 and located between 10 and 20 km away contribute the most to the seismic hazard at Tipaza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30, 1025–1055.

    Google Scholar 

  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81(2), 195–206.

    Google Scholar 

  • Albarello, D., Camassi, R., & Rebez, A. (2001). Detection of space and time heterogeneity in the completeness level of a seismic catalogue by a «robust» statistical approach: An application to the Italian area. Bulletin of the Seismological Society of America, 91(6), 1694–1703.

    Google Scholar 

  • Ambraseys, N. N., Simpson, K. U., & Bommer, J. J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4), 371–400.

    Google Scholar 

  • Atkinson, G. M., Bommer, J. J., & Abrahamson, N. A. (2014). Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismological Research Letters, 85(6), 1141–1144.

    Google Scholar 

  • Arroyo, D., Ordaz, M., & Rueda, R. (2014). On the selection of ground-motion prediction equations for probabilistic seismic-hazard analysis. Bulletin of the Seismological Society of America, 104, 1860–1875.

    Google Scholar 

  • Barani, S., Spallarossa, D., & Bazzuro, P. (2009). Disaggregation of probabilistic ground-motion hazard in Italy. Bulletin of the Seismological Society of America, 99, 2638–2661.

    Google Scholar 

  • Bakun, W. H. (1984). Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bulletin of the Seismological Society of America, 74, 439–458.

    Google Scholar 

  • Bazzurro, P., & Cornell, A. C. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 89, 501–520.

    Google Scholar 

  • Beauval, C., Tasan, H., Laurendeau, A., Delavaud, E., Cotton, F., Guéguen, P., & Kuehn, N. (2012). On the testing of ground-motion prediction equations against small-magnitude data. Bulletin of the Seismological Society of America, 102(5), 1994–2007. https://doi.org/10.1785/0120110271

    Article  Google Scholar 

  • Belabbes, S., Wicks, C., Cakir, Z., & Meghraoui, M. (2009). Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS. Journal of Geophysical Research, 114, 03406. https://doi.org/10.1029/2008JB005912

    Article  Google Scholar 

  • Belazougui, M. (2017). Algerian seismic building code: Main features of the new draft RPA 2015. 16th World Conference on Earthquake Engineering, 16WCEE 2017. Santiago Chile, January 9–13, 2017. Paper No. 1192

  • Bender, B., and Perkins, D. M. (1987). SeisRisk Ill: A Computer program for seismic hazard estimation. U.S. Geological Survey Bulletin 1772. (Washington).

  • Benouar, D. (1996). Seismic hazard evaluation at Algiers using Benouar’s earthquake catalogue. Natural Hazards, 13, 119–131.

    Google Scholar 

  • Berneuter, D. L. (1992). Determining the control earthquake from probabilistic hazards for the proposed Appendix B. L.L.N.L. Report UCRL-JC-111964, Livermore California.

  • Bommer, J. J., & Scherbaum, F. (2008). The use and misuse of logic-trees in PSHA. Earthquake Spectra, 24(4), 997–1009.

    Google Scholar 

  • Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground motion prediction equations in seismic hazard assessment. Bulletin of the Seismological Society of America, 95(2), 377–389.

    Google Scholar 

  • Bommer, J. J., & Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967–1977.

    Google Scholar 

  • Bommer, J. J., Stafford, P. J., Alarcon, J. E., & Akkar, S. (2007). The influence of magnitude range on empirical ground-motion prediction. Bulletin of the Seismological Society of America, 97(6), 2152–2170.

    Google Scholar 

  • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783.

    Google Scholar 

  • Bommer, J. J., & Montaldo Falero, V. (2020). Virtual fault ruptures in area-source zones for PSHA: Are they always needed? Seismological Research Letters. https://doi.org/10.1785/0220190345

    Article  Google Scholar 

  • Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99–138.

    Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., Gail, M., & Atkinson, G. A. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30, 1057–1085.

    Google Scholar 

  • Bozzoni, F., Corigliano, M., Lai, C. G., Salazar, W., Scandella, L., Zuccolo, E., Latchman, J., Lynch, L., & Robertson, R. (2011). Probabilistic seismic hazard assessment at the eastern Caribbean Islands. Bulletin of the Seismological Society of America, 101(5), 2499–2521. https://doi.org/10.1785/0120100208

    Article  Google Scholar 

  • BSSC-Building Seismic Safety Council. (2003). NEHRP recommended provisions for seismic regulations for new buildings and other structures, part1: provisions, FEMA 368. Federal Emergency Management Agency.

    Google Scholar 

  • Cetin, E., Meghraoui, M., Cakir, Z., Akoglu, A. M., Mimouni, O., & Chebbah, M. (2012). Seven years of postseismic deformation following the 2003 Mw = 6.8 Zemmouri earthquake (Algeria) from InSAR time series. Geophysical Research Letters, 39, 10307. https://doi.org/10.1029/2012GL051344,2012

    Article  Google Scholar 

  • Chapman, M. C. (1995). A probabilistic approach to selection of ground motions for engineering design. Bulletin of the Seismological Society of America, 85, 937–942.

    Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear-elastic response spectra for periods ranging from 0.01 and 10.0 s. Earthquake Spectra, 24, 139–171.

    Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5%-damped linear acceleration response spectra. Earthquake Spectra, 30, 1087–1115.

    Google Scholar 

  • Campbell, K. W., & Gupta, N. (2018). Modeling diffuse seismicity in probabilistic seismic hazard analysis: treatment of virtual faults. Earthquake Spectra, 34(3), 1135–1154.

    Google Scholar 

  • Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive equations for broadband (001–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13(6), 1587–1612.

    Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24, 173–215.

    Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Google Scholar 

  • Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66, 367–374.

    Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(1), 1583–1606.

    Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target applications: Applications to Central Europe and rock sites. Journal of Seismology, 10(2), 137–156.

    Google Scholar 

  • Cramer, C. H. (2001). A seismic hazard uncertainty analysis for the New Madrid seismic zone. Engineering Geology, 62, 251–266.

    Google Scholar 

  • Cramer, C. H., Petersen, M. D., & Reichel, M. S. (1996). A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura and Orange Counties, California. Bulletin of the Seismological Society of America, 86(6), 1681–1691.

    Google Scholar 

  • Cramer, C. H., Wheeler, R. L., & Mueller, C. S. (2002). Uncertainty analysis for seismic hazard in the Southern Illinois Basin. Seismological Research Letters, 73(5), 792–805.

    Google Scholar 

  • Crowley, H., Monelli, D., Pagani, M., Silva, V., Weatherill, G. (2011). OpenQuake book. The GEM Foundation, Pavia, Italy.

  • Delavaud, E., Scherbaum, F., Kühn, N., & Riggelsen, C. (2009). Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: An applicability study using Californian data. Bulletin of the Seismological Society of America, 99(6), 3248–3263.

    Google Scholar 

  • Delavaud, E., Cotton, F., Beauval, C., Akkar, S., Scherbaum, F., and Danciu, L. (2012a). Construction of a ground-motion logic tree for PSHA in Europe within the SHARE project. 15 WCEE, Lisboa, Portugal

  • Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., Drouet, S., Douglas, J., Basili, R., Sandikkaya, M. A., Segou, M., Faccioli, E., & Theodoulidis, N. (2012b). Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology., 16, 451–473. https://doi.org/10.1007/s10950-012-9281-z

    Article  Google Scholar 

  • Delavaud, E., Scherbaum, F., Kühn, N., & Allen, T. (2012c). Testing the global applicability of ground-motion prediction equations for active shallow crustal regions. Bulletin of the Seismological Society of America, 102(2), 707–721. https://doi.org/10.1785/0120110113

    Article  Google Scholar 

  • Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications., 212, 75–100.

    Google Scholar 

  • Delouis, B., Vallee, M., Meghraoui, M., Calais, E., Maouche, S., Lammali, K., Mahras, A., Briole, P., Benhamouda, F., & Yelles, K. (2004). Slip distribution of the 2003 Boumerdes Zemmouri earthquake, Algeria, from teleseismic, GPS, and coastal uplift data. Geophysical Research Letters, 31, L18607. https://doi.org/10.1029/2004GL020687

    Article  Google Scholar 

  • Déverchère, J., Yelles, K., Domzig, A., Mercier de Lépinay, B., Bouillin, J. P., Gaullier, V., Bracène, R., Calais, E., Savoye, B., Kherroubi, A., Le Roy, P., Pauc, H., & Dan, G. (2005). Active thrust faulting offshore Boumerdès Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophysical Research Letters, 32, 04311. https://doi.org/10.1029/2004GL021646

    Article  Google Scholar 

  • Douglas, J. (2003). Earthquake ground motion estimation using strong motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews, 61(1/2), 43–104.

    Google Scholar 

  • Douglas, J. (2007). On the regional dependence of earthquake response spectra. ISET Journal of Earthquake Technology, 44(1), 71–99.

    Google Scholar 

  • Eurocode 8 (2004) Design of structures for earthquake resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998–1: 2004. Comité Européen de Normalisation, Brussels

  • EPRI-Electric Power Research Institute, 1986. Seismic hazard methodology for the central and eastern United States. EPRI Report NP-4726, Palo Alto, CA.

  • Faccioli, E., Bianchini, A., and Villani, M. (2010). New ground motion prediction equations for T>1 s and their influence on seismic hazard assessment. Proceedings of the University of Tokyo Symposium on Long-Period Ground Motion and Urban Disaster Mitigation, March 17–18, 2010

  • Field, E. H., Jackson, D. D., & Dolan, J. F. (1999). A mutually consistent seismic-hazard source model for Southern California. Bulletin of the Seismological Society of America, 89(3), 559–578.

    Google Scholar 

  • Field, E. H., Jordan, T. H., & Cornell, C. A. (2003). OpenSHA—A developing community-modeling environment to seismic hazard analysis. Seismological Research Letters, 74, 406–419.

    Google Scholar 

  • Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seism. Res. Let., 66, 8–21.

    Google Scholar 

  • Frankel, A., Muller, C. S., Barnhard, T. P., Leyendecker, E. V., Wesson, R. L., Harmsen, S. C., Klein, F. W., Perkins, D. M., Dickman, N. C., Hanson, S., & Hopper, M. G. (2000). USGS national seismic hazard maps. Earthquake Spectra, 16, 1–19.

    Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with afershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1367.

    Google Scholar 

  • Gherboudj, F., & Laouami, N. (2014). Scalar and vector probabilistic seismic hazard analysis: Application for Algiers City. Journal of Seismology, 18, 319–330. https://doi.org/10.1007/s10950-013-9380-5

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America., 34, 185–188.

    Google Scholar 

  • Hamdache, M., Peláez, J. A., Talbi, A., & López Casado, C. (2010). A unified catalog of main earthquakes for Northern Algeria from A.D. 856 to 2008. Seis. Res. Lett., 81, 732–739.

    Google Scholar 

  • Hamdache, M., Peláez, J. A., Talbi, A., Mobarki, M., & López Casado, C. (2012). Ground-motion hazard values for Northern Algeria. Pure and Applied Geophysics, 169, 711–723.

    Google Scholar 

  • Hamdache, M., Peláez, J.A., Yelles-Chaouche, A., Monteiro, R., Marques, M., Castro, M., Beldjoudi, H., and Kherroubi, A. (2019). A Preliminary Seismic Hazard Modelling in Northern Algeria. Springer Nature Switzerland AG 2019. N. Sundararajan et al. (eds.), On Significant Applications of Geophysical Methods, Advances in Science, Technology & Innovation, https://doi.org/10.1007/978-3-030-01656-2_53.

  • Harbi, A., Maouche, S., Vaccari, F., Aoudia, A., Oussadou, F., Panza, G. F., & Benouar, D. (2007). Seismicity, seismic input and site effects in the Sahel Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427–447.

    Google Scholar 

  • Harbi, A., Sebaï, A., Benmedjber, M., Ousadou, F., Rouchiche, Y., Grigahcene, A., Aïni, D., Bourouis, S., Maouche, S., & Ayadi, A. (2015). The Algerian Homogenized Macroseismic Database (267–1989): A deeper Insight into the Algerian Historical Seismicity. Seismological Research Letters, 86(6), 1705–1716.

    Google Scholar 

  • Harmsen, S., & Frankel, A. (2001). Geographic deaggregation of seismic hazard in the United States. Bulletin of the Seismological Society of America, 91, 13–26.

    Google Scholar 

  • Harmsen, S., Perkins, D., & Frankel, A. (1999). Deaggregation of probabilistic ground motions in the Central and Eastern United States. Bulletin of the Seismological Society of America, 89, 1–13.

    Google Scholar 

  • Harmsen, S., Klein, W., Perkins, D. M., Dickman, N. C., Hanson, S., & Hopper, M. G. (2000). USGS national seismic hazard maps. Earthquake Spectra, 16, 1–19.

    Google Scholar 

  • Heddar, A., Authemayou, C., Djellit, H., Yelles, A. K., Déverchère, J., Gharbi, S., Boudiaf, A., & Van Vliet Lanoe, B. (2013). Preliminary results of a paleoseismological analysis along the Sahel fault (Algeria): New evidence for historical seismic events. Quaternary International, 302, 210–223.

    Google Scholar 

  • Heaton, T. H., Tajima, F., & Mori, A. W. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8, 25–83.

    Google Scholar 

  • IASPEI (International Association of Seismology and Physics of the Earth’s Interior) (2005) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data, available at: ftp://ftp.iaspei.org/pub/commissions/CSOI/summary of WG recommendations 2005.pdf

  • ICC. (2009). International building code 2009. International Code Council.

    Google Scholar 

  • Idriss, I. M. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30, 1155–1177.

    Google Scholar 

  • Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regionsI. Instrumental Seismicity. Geophysical Journal International, 124, 381–414.

    Google Scholar 

  • Joyner, W. B., and Fumal, T. E. (1985). Predictive mapping of earthquake ground motion, In: J. I. Zione (ed.), Evaluating Earthquake Hazards in the Los Angeles Region – An Earth Science Perspective, USGS Professional Paper 1360, Washington D.C.

  • Kale, O., & Akkar, S. (2017). A ground-motion logic-tree scheme for regional seismic hazard studies. Earthquake Spectra, 33, 837–856.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.

    Google Scholar 

  • Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3–4), 185–199.

    Google Scholar 

  • Kagan, Y. (2002). Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148(3), 520–541.

    Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum magnitude, mmax. Pure and Applied Geophysics, 161, 1655–1681.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for the maximum possibe earthquake magnitude estimation. Acta Geohys, 5, 674–700.

    Google Scholar 

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106, 1210–1222.

    Google Scholar 

  • Kulkarni, R. B., Youngs, R. R., and Coppersmith, K. J. (1984). Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, vol. 1, 263–270. Englewood Cliffs, NJ: Prentice Hall.

  • Laouami, N., Slimani, A., & Larbes, S. (2018). Ground motion prediction equations for Algeria and surrounding region using site classification based H/V spectral ratio. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-018-0310-3

    Article  Google Scholar 

  • Lapajne, J. K., Sket Motnikar, B., Zabukovec, B., & Zupancic, P. (2003). Probabilistic seismic hazard assessment methodology for distributed seismicity. Bulletin of the Seismological Society of America., 93, 2502–2515.

    Google Scholar 

  • Linkimer, L. (2008). Relationship between peak ground acceleration and modified Mercalli intensity in Costa Rica. – Revista Geol. De Amér. Central, 38, 81–94.

    Google Scholar 

  • Lombardi, A. M., Akinci, A., Malagnini, L., and Mueller, C. S. (2005). Uncertainty analysis for seismic hazard in Northern and Central Italy. Annals of Geophysics, 48(6), 853–865.

  • López Casado, C., Molina, S., Delgado, J., & Peláez, J. A. (2000). Attenuation of intensity with epicentral distance in the Iberian Peninsula. Bulletin of the Seismological Society of America, 90, 34–47.

    Google Scholar 

  • Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., & Haddoum, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509(2011), 69–80. https://doi.org/10.1016/j.tecto.2011.06.003

    Article  Google Scholar 

  • Maiti, S. K., Nath, S. K., Adhikari, M. D., Srivastara, N., Sengupta, P., & Gupta, A. K. (2017). Probabilistic seismic hazard model of west Bengal. Journal of Earthquake Engineering, 21(7), 113–1157. https://doi.org/10.1080/13632469.2016.1210054

    Article  Google Scholar 

  • Malhotra, P. K. (2005). Return period of design ground motions. Seismological Research Letters, 76, 693–699.

    Google Scholar 

  • Mandal, H. S., Shukla, A. K., Khan, K., & Mishra, O. P. (2013). A new insight into Probabilistic seismic hazard analysis for Central India. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-013-0666-x

    Article  Google Scholar 

  • Matthews, M. V., Ellsworth, W. L., & Reasenberg, P. A. (2002). A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92, 2233–2250.

    Google Scholar 

  • Mak, S., Clements, R. A., & Schorlemmer, D. (2017). Empirical evaluation of hierarchical ground-motion models: Score uncertainty and model weighting. Bulletin of the Seismological Society of America, 107, 949–965.

    Google Scholar 

  • McGuire, R. K. (1977). Effects of uncertainty in seismicity on estimates of seismic hazard for the east coast of the United States. Bulletin of the Seismological Society of America, 67, 827–848.

    Google Scholar 

  • McGuire, R. K. (1995). Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bulletin of the Seismological Society of America, 85, 1275–1284.

    Google Scholar 

  • McGuire, R. K. (2004). Seismic Hazard and Risk Analysis, EERI Monograph MNO-10, Earthquake Engineering Research Institute, El Cerrito, CA, 187 pp.

  • McGuire, R. K., & Shedlock, K. M. (1981). Statistical Uncertainty in seismic hazard evaluations in the United States. Bulletin of the Seismological Society of America, 71, 1287–1308.

    Google Scholar 

  • Meghraoui, M. (1991). Blind reverse faulting system associated with the Mont ChenouaTipasa earthquake of 29 October 1989 (north-central Algeria). Terra Nova, 3, 84–93.

    Google Scholar 

  • Meghraoui, M., & Doumaz, F. (1996). Earthquake-induced flooding and paleoseismicity of the El Asnam (Algeria) fault related fold. Journal of Geophysical Research, 101, 17617–17644.

    Google Scholar 

  • Mezcua J (2002) Seismic engineering course (in Spanish). Universidad Politécnica de Madrid

  • Mignan, A., and Woessner, J. (2012). Estimating the magnitude of completeness in earthquake catalogs, Community Online Resource for Statistical Seismicity Analysis, doi:https://doi.org/10.5078/corssa-00180805. Available at http://www.corssa.org

  • Monelli, D., Pagani, M., Weatherill, G., Danciu, L., & Garcia, J. (2014). Modeling distributed seismicity for probabilistic seismic-hazard analysis: Implementation and insights with the OpenQuake engine. Bulletin of the Seismological Society of America, 104(4), 1636–1649. https://doi.org/10.1785/0120130309

    Article  Google Scholar 

  • Morel, J. L., & Meghraoui, M. (1996). The Goringe Alboran-Tell (Galtel) tectonic zone: A transpression system along the Africa-Eurasia plate boundary. Geology, 24, 755–758.

    Google Scholar 

  • Murphy, J. R., & O’Brien, L. J. (1977). The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bulletin of the Seismological Society of America, 67, 877–915.

    Google Scholar 

  • Newmark, N. M., and Hall, W. J. (1982). Earthquake spectra and design. Earthquake Engineering Research Institute Monograph Series no. 3, Berkeley, California, USA.

  • Pace, B., Visini, F., & Peruzza, L. (2016). FiSH: MATLAB tools to turn fault data into seismic-hazard models. Seismological Research Letters, 87(2A), 374–386.

    Google Scholar 

  • Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). OpenQuake-engine: An open hazard (and risk) software for the global earthquake model. Seismological Research Letters, 85, 692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Patel, J. K., Kapadia, C. H., & Owen, D. B. (1976). Handbook of statistical distributions. Marcel Dekker.

    Google Scholar 

  • Peláez, J. A., & López Casado, C. (2002). Seismic hazard estimate at the Iberian Peninsula. Pure and Applied Gephysics, 59, 2699–3273.

    Google Scholar 

  • Peláez, J. A., López Casado, C., & Henares, J. (2002). Deaggregation in magnitude, distance and azimuth in the south and west of the Iberian Peninsula. Bulletin of the Seismological Society of America, 92, 2177–2185.

    Google Scholar 

  • Peláez, J. A., Hamdache, M., & Lopez Casado, C. (2003). Seismic hazard in Northern Algeria using spatially-smoothed seismicity. Results for Peak Ground Acceleration, Tectonophys., 372, 105–119.

    Google Scholar 

  • Peláez, J. A., Hamdache, M., & Lopez Casado, C. (2005a). Updating the probabilistic seismic hazard values of Northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure and Applied Geophysics, 162, 2163–2177.

    Google Scholar 

  • Peláez, J. A., Delgado, J., & Lopez Casado, C. (2005b). A preliminary probabilistic seismic hazard in terms of Arias intensity in southeastern Spain. Engineering Geology, 77, 139–151. https://doi.org/10.1016/j.enggeo.2004.09.002

    Article  Google Scholar 

  • Peláez, J. A., Hamdache, M., & Lopez Casado, C. (2006a). Seismic hazard in terms of spectral accelerations and uniform hazard spectra in Northern Algeria. Pure and Applied Geophysics, 163, 119–135.

    Google Scholar 

  • Peláez, J. A., Hamdache, M., Lopez Casado, C. (2006b) Strong ground motion in the 21 May 2003 Algiers, Algeria, earthquake. 5th Hispano –Portugues Assembly of Geodesy and Geophysics, Sevilla, Spain.

  • Peláez, J. A., Hamdache, M., Sanz de Galdeano, C., Sawires, R., and García Hernández, M. T. (2016). Forecasting moderate earthquakes in Northern Algeria and Morocco in Earthquake and their impact on society (S. D’Amico, ed.), Springer, Natural Hazards, 81–95.

  • Peláez, J. A., Henares, J., Hamdache, M., and Sanz de Galdeano, C (2018a) A seismogenic zone model for seismic hazard studies in Northwestern Africa in Moment tensor solutions. A useful tool for seismotectonics (S. D'Amico, ed.), Springer Natural Hazards, 643–680.

  • Peláez, J. A., Henares, J., Hamdache, M., and Sanz de Galdeano, C. (2018b). An updated seismic model for the northwestern Africa. 16 E.C.E. Eng. Thessaloniki, 18–21 June 2018b

  • Peruzza, L., & Pace, B. (2002). Sensitivity analysis for seismic source characteristics to probabilistic seismic hazard assessment in central Apennines (Abruzzo area). Bollettino Di Geofisica Teorica Ed Applicata, 43, 79–100.

    Google Scholar 

  • Peruzza, L., Pace, B., & Cavallini, F. (2010). Error propagation in time-dependent probability of occurrence for characteristic earthquakes in Italy. J. Sei., 14(1), 119–141. https://doi.org/10.1007/s10950-008-9131-1

    Article  Google Scholar 

  • Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., Zeng, Y., Rezaeian, S., Harmsen, S. C., Boyd, O. S., Field, N., Chen, R., Rukstales, K. S., Luco, N., Wheeler, R. L., Williams, R.A., and Olsen, A. H. (2015) The 2014 United States National Seismic Hazard Model: Earthquake Spectra 31(1):1–30. https://doi.org/10.1193/120814EQS210M.

  • RPA99. (2003). Règlement Parasismique Algérien. CGS Earthquake Engineering Research Center, Rue Kaddour Rahim, BP 252, Hussein Dey, Algiers, Algeria

  • Roselli, P., Marzocchi, W., & Faenza, F. (2016). Toward a new probabilistic framework to score and merge ground motion prediction equations: The case of the Italian region. Bulletin of the Seismological Society of America, 106(2), 720–733. https://doi.org/10.1785/0120150057

    Article  Google Scholar 

  • Rueda, J., & Mezcua, J. (2002). Study of the 23 September 2003, Pego (Alicante) earthquake. Obtaining a mbLg-MW relationship for the Iberian Peninsula. Revista De La Sociedad Geológica De España, 15, 159–173. (In Spanish).

    Google Scholar 

  • Salazar, W., Brown, L., & Mannette, G. (2013). Probabilistic seismic hazard assessment for Jamaica. Journal of Civil Engineering and Architecture, 7(9), 1118–1140. ISSN 1934-7359.

    Google Scholar 

  • Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model selection in seismic hazard analysis: An information-theoretic perspective. Bulletin of the Seismological Society of America, 99(6), 3234–3247.

    Google Scholar 

  • Shumway, A. M., Petersen, M. D., Powers, P. M., and Rezaeian, S. (2018). Additional period and site class maps for the 2014 National Seismic Hazard Model for the conterminous United States: US. G.S. Open-File Report 2018–1111, 46 p., https://doi.org/10.3133/ofr20181111.

  • Secanell, R., Martin, C., Viallet, E., & Senfaute, G. (2018). A Bayesian methodology to update the probabilistic seismic hazard assessment. Bulletin of Earthquake Engineering, 16, 2513–2527.

    Google Scholar 

  • Senior Seismic Hazard Analysis Committee (SSHAC) (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, Lawrence Livermore National Laboratory. Report UCRL-ID-122160, U.S. Nuclear Regulatory Commission Report NUREG/CR-6372.

  • Sparacino, F., Palano, M., Peláez, J. A., & Fernández, J. (2020). Geodetic deformation versus seismic crustal moment-rate: Insights from the Ibero-Maghrebian region. Remote Sensing. https://doi.org/10.3390/rs12060952

    Article  Google Scholar 

  • Stafford, P. J., Strasser, F. O., & Bommer, J. J. (2008). An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bulletin of Earthquake Engineering, 6(2), 149–177.

    Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings First Microzonation Conference, Seattle, U.S.A., 897–909

  • Stewart, J. P., Douglas, J., Javanbarg, M., Bozorgnia, Y., Abrahamson, N. A., Boore, D. M., & Stafford, P. J. (2015). Selection of ground motion prediction equations for the Global Earthquake Model. Earthquake Spectra, 31(1), 19–45.

    Google Scholar 

  • Thenhaus, P. C., and Campbell, K .W. (2003). Seismic hazard analysis, in Earthquake Engineering Handbook (W.-F. Chen and C. Scawthorn, eds.), Chapter 8, CRC Press, 50 pp

  • Tinti, S., & Mulargia, F. (1985). Completeness analysis of a seismic catalog. Annales Geophysicae, 3, 407–414.

    Google Scholar 

  • U.S. Department of Energy (1995) Natural phenomena hazards assessment criteria, U.S. Department of Energy Standard Report DOE-STD-1023–95.

  • U.S. Nuclear Regulatory Commission (USNRC) (1997) Identification and characterization of seismic sources and determination of safe shutdown earthquake ground motion. Appendix C: Determination of controlling earthquakes and development of seismic hazard information base, in Regulatory Guide 1.165, Office of Nuclear Regulatory Research, Washington, D.C.

  • Visini, F., Valentini, A., Chartier, T., Scotti, O., & Pace, B. (2020). Computational tools for relaxing the fault segmentation in probabilistic seismic hazard modeling in complex fault system. Pure and Applied Geophysics, 177, 1855–1877. https://doi.org/10.1007/s00024-019-02114-6

    Article  Google Scholar 

  • Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America, 70(4), 1337–1346.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. L. (1994). New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 74–1002.

    Google Scholar 

  • Wen, Y. K. (2004). Probabilistic aspects of earthquake engineering in Earthquake engineering. From engineering seismology to performance-based engineering (Bozorgnia, Y., and Bertero, V.V., eds.), CRC Press, Boca Raton, Florida

  • Xu, W. (2019). Probabilistic seismic hazard assessment using spatially smoothed seismicity in North China seismic zone. Journal of Seismology, 23, 613–622. https://doi.org/10.1007/s10950-019-09825-2

    Article  Google Scholar 

  • Yazdani, A., Shahidzadeh, M. S., & Takada, T. (2021). Merging data and experts’ knowledge-based weights for ranking GMPEs. Earthquake Spectra, 37(2), 857–875. https://doi.org/10.1177/8755293020970974

    Article  Google Scholar 

  • Yelles-Chaouche, A. K., Djellit, H., Haned, S., Deramchi, A., Allili, T., Kherroubi, A., Beldjoudi, H., Semmane, F., Amrani, A., Haddana, Z., Chaoui, F., Aidi, A., & Allili, A. (2007). The Algerian digital network. European-Mediterranean Seismological Centre Newsletter, 22, 7–8.

    Google Scholar 

  • Yelles-Chaouche, A. K., Domzig, A., Déverchère, J., Bracène, R., Mercier de Lépinay, B., Strzerzynski, P., Bertrand, G., Boudiaf, A., Winter, T., Kherroubi, A., Le Roy, P., & Djellit, H. (2009). Plio-quaternary reactivation of the Neogene margin off NW Algiers, Algeria: The Khayr-Al-Din bank. Tectonophysics, 475, 98–116.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor Pr. A. Kijko, for his valuable advice. We would like to express our gratitude to the anonymous reviewers for their insightful remarks and suggestions, which considerably improved the quality of the manuscript. Research partially funded by the Programa Operativo FEDER Andalucía 2014-2020—Call made by the University of Jaén, 2018.

Funding

The second author is grateful for partial financial support for this research work through the Programa Operativo FEDER Andalucía 2014–2020—Call by the University of Jaén, 2018.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MH; methodology, MH and JAP; validation, MH, JAP, JH and RS; formal analysis, MH and JAP; investigation, MH, JAP, JH and RS; resources, MH; data curation, MH and JAP; writing-original draft preparation, MH and JAP; writing-review and editing, MH, JAP, JH and RS; visualization, MH and JAP; supervision, MH, JAP, JH and RS; project administration, MH; funding acquisition, JAP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Hamdache.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 19111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdache, M., Peláez, J.A., Henares, J. et al. Seismic Hazard Assessment and Its Uncertainty for the Central Part of Northern Algeria. Pure Appl. Geophys. 179, 2083–2118 (2022). https://doi.org/10.1007/s00024-022-03066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03066-0

Keywords

Navigation