Skip to main content
Log in

Quantitative Rainfall Estimation with a Mobile XPOL Weather Radar

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The increased frequency of flooding in the metropolitan area of São Paulo (MASP), São Paulo, Brazil, makes it necessary to have an accurate precipitation monitoring and nowcasting system to mitigate socioeconomic impacts. This research is on the use of remote sensing with dual Doppler X-band weather radar (MXPOL) to improve the high spatiotemporal resolution rainfall rates estimation in MASP. The methodology includes an initial correction of the polarimetric data, namely, the specific differential phase (KDP) to estimate the attenuation correction, the adjustment of rainfall rates by polarimetric variables relationships, and the error estimation by cross-validation with rain gauges. Results show that the five relationships have similar performance with just a slight difference between the use of power relationships (e.g., reflectivity (Z) and differential reflectivity (ZDR)) or frequency (e.g., specific differential phase) variables. The average error was 1.1 mm for the mean square error, 29% for the relative error, and 0.8 for the correlation coefficient. An adjustment of coefficient specifically for MXPOL was significantly advantageous for the rainfall rate estimation with R (Z, ZDR) and R (ZDR, KDP) relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anagnostou, E. N., et al. (2004). High-resolution rainfall estimation from X-band polarimetric radar measurements. Journal of Hydrometeorology, 5(1), 110–128.

    Article  Google Scholar 

  • Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., & Javelle, P. (2011). Sensitivity of hydrological models to uncertainty in rainfall input. Hydrological Sciences Journal, 56(3), 397–410. https://doi.org/10.1080/02626667.2011.563742

    Article  Google Scholar 

  • Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric doppler weather radar—principles and applications. Cambridge University Press.

    Book  Google Scholar 

  • Bringi, V. N., Keenan, T. D., & Chandrasekar, V. (2001). Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1906–1915.

    Article  Google Scholar 

  • Cifelli, R., Chandrasekar, V., Chen, H., & Johnson, L. E. (2018). High-resolution radar quantitative precipitation estimation in the san francisco bay area: rainfall monitoring for the urban environment. Journal of the Meteorological Society of Japan, 96A, 141–155. https://doi.org/10.2151/jmsj.2018-016

    Article  Google Scholar 

  • Diederich, M., et al. (2015). Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. Journal of Hydrometeorology, 16(2), 503–516.

    Article  Google Scholar 

  • Instituto Florestal (2020). Serviços Ecossistêmicos e Bem-Estar Humano na Reserva da Biosfera do Cinturão verde da Cidade de São Paulo. Editors: Elaine Aparecida Rodrigues, Rodrigo Antonio Braga Moraes Victor, Bely Clemente Camacho Pires, Edgar Fernando de Luca. 608 p. ISBN: 978-85-64808-21-8. Available in Portuguese at: https://www.infraestruturameioambiente.sp.gov.br/institutoflorestal/2020/12/servicos-ecossistemicos-e-bem-estar-humano-na-rbcv/.

  • Ferreira, A. T. (2010). Análise dinâmica, termodinâmica e microfísica de uma linha de instabilidade com o radar meteorológico móvel MXPOL. [s.l.] Universidade de São Paulo

  • Farias, J. F. S., & Pereira Filho, A. J. (2013). Rainfall short-term forecast in the surveillance area of São Paulo weather radar. Revista Brasileira de Meteorologia, 8(2), 199–209. https://doi.org/10.1590/S0102-77862013000200009

    Article  Google Scholar 

  • Jacobi, S., & Heistermann, M. (2016). Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany. Geomatics, Natural Hazards and Risk, 7(6), 1785–1799.

    Article  Google Scholar 

  • Krajewski, W. F., & Smith, J. A. (2002). Radar hydrology: Rainfall estimation. Advances in Water Resources, 25(8–12), 1387–1394. https://doi.org/10.1016/S0309-1708(02)00062-3

    Article  Google Scholar 

  • Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5(4), 165–166.

    Article  Google Scholar 

  • Matrosov, S. Y., et al. (2002). X-band polarimetric radar measurements of rainfall. Journal of Applied Meteorology, 41(9), 941–952.

    Article  Google Scholar 

  • Matrosov, S. Y., Heymsfield, A. J., & Wang, Z. (2005). Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophysical Research Letters, 32, 13816.

    Article  Google Scholar 

  • Nash, J.C. (1990). Compact numerical methods for computers: linear algebra and function minimization. [sl] Hilger

  • Park, S. G., et al. (2005). Correction of radar reflectivity and differential reflectivity for rain attenuation at X Band. Part I: Theoretical and empirical basis. Journal of Atmospheric and Oceanic Technology, 22(11), 1621–1632.

    Article  Google Scholar 

  • Park, S. G., et al. (2005). Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. Journal of Atmospheric and Oceanic Technology, 22(11), 1633–1655.

    Article  Google Scholar 

  • Pereira Filho, A. J. (2012). A mobile X-POL weather radar for hydrometeorological applications in the metropolitan area of São Paulo Brazil. Geoscientific Instrumentation, Methods and Data Systems, 1(169–183), 2012. https://doi.org/10.5194/gi-1-169-2012

    Article  Google Scholar 

  • Pereira Filho, A.J., et al. (2005). The hydrometeorological forecast system for the Metropolitan Area of Sao Paulo. In World Weather Research Symposium Program on Nowcasting and Very Short Forecasting. Annals. Toulouse, France: Meteo France (CDROM).

  • Pereira Filho, A.J., et al., (2007). An operational mobile XPOL for hydrometeorological applications in Brazil. In 33rd Conference on Radar Meteorology. Proceedings, Cairns, Australia.

  • Pereira Filho, A. J., Carbone, R. E., Janowiak, J. E., Arkin, P., Joyce, R., Hallak, R., & Ramos, C. G. M. (2010). Satellite rainfall estimates over South America—possible applicability to the water management of large watersheds. The Journal of the American Water Resources Association, 46(2), 344–360. https://doi.org/10.1111/j.1752-1688.2009.00406.x

    Article  Google Scholar 

  • Pereira Filho, A.J. et al., (2013). Measurements of drop size distribution in a megacity. In: 36th Conference on Radar Meteorology. Proceedings, Breckenridge, CO.

  • Pereira Filho, A. J., Vemado, F., Vemado, G., Reis, F. A. G. V., Giordano, L. C., Cerri, R. I., Santos, C. C., Lopes, E. S. S., Gramani, M. F., Ogura, A. T., Zaine, J. E., Cerri, L. E., Augusto Filho, O., Daffonseca, F. M., & Amaral, C. S. (2018). A step towards integrating CMORPH precipitation estimation with rain gauge measurements. Advances in Meteorology. https://doi.org/10.1155/2018/2095304

    Article  Google Scholar 

  • Petersen, W. A., Carey, L. D., Rutledge, S. A., Knievel, J. C., Doesken, N. J., Johnson, R. H., McKee, T. B., Haar, T. V., & Weaver, J. F. (1999). Mesoscale and radar observations of the fort collins flash flood of 28 July 1997. Bulletin of the American Meteorological Society, 80(2), 191–216.

    Article  Google Scholar 

  • Proakis, G. P., & Manolakis, D. G. (1992). Digital signal processing: Principles, algorithms and applications. New York: Macmillam, pp 169, 411 and 585

  • Pruppacher, H. R., & Beard, K. V. (1970). A wind-tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96(408), 247–256.

    Article  Google Scholar 

  • Raghavan, S., (2003). Radar Meteorology. [sl] Dordrecht: Springer.

  • Refaeilzadeh P., Tang L., & Liu H. (2009). Cross-validation. In Liu L., Özsu M.T. (eds) Encyclopedia of database systems. Springer.

  • Rosenfeld, D., & Ulbrich, C. W. (2003). Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorological Monographs, 30(52), 237–237.

    Article  Google Scholar 

  • Ryzhkov, A. V., & Zrnić, D. S. (2019). Radar polarimetry for weather observations (p. 486). Springer International Publishing.

    Book  Google Scholar 

  • Teixeira, E., & Haddad, E. A. (2013). Mapeamento das Perdas Econômicas Potenciais dos Pontos de Alagamento do Município de São Paulo, 2008–2012. São Paulo.

  • Testud, J., et al. (2000). The rain profiling algorithm applied to polarimetric weather radar. Journal of Atmospheric and Oceanic Technology, 17(3), 332–356.

    Article  Google Scholar 

  • Thurai, M., Mishra, K. V., Bringi, V. N., & Krajewski, W. F. (2017). Initial results of a new composite-weighted algorithm for dual-polarized x-band rainfall estimation. Journal of Hydrometeorology, 18(4), 1081–1100.

    Article  Google Scholar 

  • Tokay, A., D’Adderio, L. P., Porcù, F., Wolff, D. B., & Petersen, W. A. (2017). A field study of footprint-scale variability of raindrop size distribution. Journal of Hydrometeorology, 18(12), 3165–3179.

    Article  Google Scholar 

  • Wang, Y., & Chandrasekar, V. (2010). Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. Journal of Atmospheric and Oceanic Technology, 27(10), 1665–1676.

    Article  Google Scholar 

  • Wijayarathne, D. B., & Coulibaly, P. (2020). Identification of hydrological models for operational flood forecasting in St John’s, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 27, 100646. https://doi.org/10.1016/j.ejrh.2019.100646

    Article  Google Scholar 

  • Wu, W., et al. (2018). A dynamical Z-R relationship for precipitation estimation based on radar echo-top height classification. Advances in Meteorology. https://doi.org/10.1155/2018/8202031

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Departamento de Energia Elétrica (DAEE) for providing the rain gauge datasets. The first author was supported by Coordination for the Improvement of Higher Education Personnel (CAPES) and the second by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), under grant 302349/2017-6. The MXPOL system and research were sponsored by The State of Sao Paulo Research Support Foundation (FAPESP) under granted 13952-2.

Funding

The Funding has been received from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Conselho Nacional de Desenvolvimento Científico e Tecnológico with Grant no. 302349/2017-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darsys Agüero Morell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morell, D.A., Pereira Filho, A.J. & Beltrán, R.P. Quantitative Rainfall Estimation with a Mobile XPOL Weather Radar. Pure Appl. Geophys. 179, 2957–2968 (2022). https://doi.org/10.1007/s00024-022-03037-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03037-5

Keywords

Navigation