Skip to main content
Log in

Nowcasting-Based Earthquake Hazard Estimation at Major Cities in New Zealand

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Large earthquakes, accompanied by many smaller ones in between, frequently strike New Zealand and adjoining areas. This study implements the earthquake nowcasting method and presents the results in terms of earthquake potential score (EPS) at 15 major population centers in New Zealand. Based on seismicity data, the EPS incorporates ensemble seismicity statistics in a discrete natural time domain to estimate the current level of seismic cycle progress on a 0–100% scale of extremity. Natural times mark the evolution of the process in terms of small interevent counts between consecutive large earthquakes in a defined area. Statistical inference from exponential, gamma, Weibull and exponentiated exponential distributions indicates natural time Weibull statistics in the study area. With the derived EPS corresponding to M ≥ 6 events, the following ranking of cities is observed, in decreasing order: Palmerston North (97%), Auckland (96%), Lower Hutt (95%), Porirua (95%), Wellington (95%), Nelson (94%), Hibiscus Coast (93%), Christchurch (92%), Invercargill (91%), Napier (87%), Rotorua (84%), Tauranga (82%), Dunedin (81%), Hamilton (77%) and Gisborne (6%). These nowcast scores are largely stable against some variations in the threshold magnitude, catalog time period and city region. Results of the contemporary earthquake hazard serve a variety of end-user applications in New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and Resources

Seismicity data for the present analysis were obtained from two global public catalogs: the Advanced National Seismic System (ANSS) comprehensive catalog (http://www.ncedc.org/anss/catalog-search.html) and International Seismological Centre (ISC) catalog (http://www.isc.ac.uk/iscbulletin/search/catalogue/). The dataset was last retrieved in August 2021.

References

  • Barnes, P. M., de Lépinay, B. M., Collot, J. Y., Delteil, J., & Audru, J. C. (1998). Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics, 17(4), 534–557.

    Article  Google Scholar 

  • Beanland, S., Berryman, K. R., & Blick, G. H. (1989). Geological investigations of the 1987 Edgecumbe earthquake, New Zealand. New Zealand Journal of Geology and Geophysics, 32, 73–91.

    Article  Google Scholar 

  • Beavan, J., Wallace, L. M., Palmer, N., Denys, P., Ellis, S., Fournier, N., Hreinsdottir, S., Pearson, C., & Denham, M. (2016). New Zealand GPS velocity field: 1995–2013. New Zealand Journal of Geology and Geophysics, 59(1), 5–14.

    Article  Google Scholar 

  • Berryman, K. R., & Beanland, S. (1988). The rate of tectonic movement in New Zealand from geological evidence. Transactions of the Institution of Professional Engineers New Zealand, 15, 25–35.

    Google Scholar 

  • Berryman, K. R., & Smith, W. D. (1986). Earthquake hazard in New Zealand: Inferences from seismology and geology. Royal Society New Zealand Bulletin, 24, 223–243.

    Google Scholar 

  • DeMets, C. R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic time scale on estimates of current plate motion. Geophysics Research Letter, 21, 2191–2194.

    Article  Google Scholar 

  • Diederichs, A., Nissen, E. K., Lajoie, L. J., Langridge, R. M., Malireddi, S. R., Clark, K. J., Hamling, I. J., & Tagliasacchi, A. (2019). Unusual kinematics of the Papatea fault (2016 Kaikōura earthquake) suggest anelastic rupture. Science Advances, 5(10), eaax5703.

    Article  Google Scholar 

  • Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. F., & Meletti, C. (2020). Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges. Reviews of Geophysics, 58(2), e2019RG000653.

    Article  Google Scholar 

  • Hamilton, R. M., & Evison, F. F. (1967). Earthquakes at intermediate depths in south-west New Zealand. New Zealand Journal of Geology and Geophysics, 10(6), 1319–1329.

    Article  Google Scholar 

  • Hamling, I. J., D’Anastasio, E., Wallace, L. M., Ellis, S., Motagh, M., Samsonov, S., Palmer, N., & Hreinsdóttir, S. (2014). Crustal deformation and stress transfer during a propagating earthquake sequence: The 2013 Cook Strait sequence, central New Zealand. Journal of Geophysical Research: Solid Earth, 119(7), 6080–6092.

    Article  Google Scholar 

  • Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., & D’Anastasio, E. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science, 356, 6334.

    Article  Google Scholar 

  • Holliday, J. R., Graves, W. R., Rundle, J. B., & Turcotte, D. L. (2016). Computing earthquake probabilities on global scales. Pure and Applied Geophysics, 173(3), 739–748.

    Article  Google Scholar 

  • Holt, W. E., & Haines, A. J. (1995). The kinematics of northern South Island, New Zealand, determined from geologic strain rates. Journal of Geophysical Research: Solid Earth, 100(B9), 17991–18010.

    Article  Google Scholar 

  • Horspool, N., Elwood, K., Gerstenberger, M. (2021). Risk-targeted hazard spectra for seismic design in New Zealand. In Proceedings of the 2021 New Zealand Society for Earthquake Engineering Annual Technical Conference.

  • Hull, A. G., & Berryman, K. R. (1986). Holocene tectonism in the region of the Alpine fault at Lake McKerrow, Fiordland, New Zealand. Recent Crustal Movements of the Pacific Region, 24, 317–331.

    Google Scholar 

  • Luginbuhl, M., Rundle, J. B., Hawkins, A., & Turcotte, D. L. (2018a). Nowcasting earthquakes: A comparison of induced earthquakes in Oklahoma and at the Geysers, California. Pure and Applied Geophysics, 175(1), 49–65.

    Article  Google Scholar 

  • Luginbuhl, M., Rundle, J. B., & Turcotte, D. L. (2018b). Natural time and nowcasting earthquakes: Are large global earthquakes temporally clustered? Earthquakes and Multi-Hazards around the Pacific Rim, II, 137–146.

    Google Scholar 

  • Luginbuhl, M., Rundle, J. B., & Turcotte, D. L. (2018c). Natural time and nowcasting induced seismicity at the Groningen gas field in the Netherlands. Geophysical Journal International, 215(2), 753–759.

    Article  Google Scholar 

  • Neha, & Pasari, S. (2022). A review of empirical orthogonal function (EOF) with an emphasis on the co-seismic crustal deformation analysis. Natural Hazards, 110(1), 29–56.

    Article  Google Scholar 

  • Pasari, S. (2015). Understanding Himalayan tectonics from geodetic and stochastic modeling. Unpublished PhD Thesis, Indian Institute of Technology Kanpur.

  • Pasari, S. (2019). Nowcasting earthquakes in the Bay of Bengal region. Pure and Applied Geophysics, 176(4), 1417–1432.

    Article  Google Scholar 

  • Pasari, S. (2020). Stochastic modeling of earthquake interevent counts (natural times) in northwest himalaya and adjoining regions. In S. Bhattacharyya, J. Kumar, K. Ghoshal (Eds), Mathematical modeling and computational tools, Springer Proceedings in Mathematics & Statistics (Vol. 320, pp. 495–501). Singapore: Springer.

  • Pasari, S. (2022). Estimation of current earthquake hazard through nowcasting method. In Srinivas, R., Kumar, R., & Dutta, M. (eds) Advances in computational modeling and simulation, pp. 55–60.

  • Pasari, S., & Dikshit, O. (2014). Three-parameter generalized exponential distribution in earthquake recurrence interval estimation. Natural Hazards, 73(2), 639–656.

    Article  Google Scholar 

  • Pasari, S., & Dikshit, O. (2015). Distribution of earthquake interevent times in northeast India and adjoining regions. Pure and Applied Geophysics, 172(10), 2533–2544.

    Article  Google Scholar 

  • Pasari, S., & Dikshit, O. (2018). Stochastic earthquake interevent time modeling from exponentiated Weibull distributions. Natural Hazards, 90(2), 823–842.

    Article  Google Scholar 

  • Pasari, S., & Mehta, A. (2018). Nowcasting earthquakes in the northwest Himalaya and surrounding regions. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.

  • Pasari, S., & Sharma, Y. (2020). Contemporary earthquake hazards in the West-Northwest Himalaya: a statistical perspective through natural times. Seismological Society of America, 91(6), 3358–3369.

    Google Scholar 

  • Pasari, S., Sharma, Y., & Neha. (2021a). Quantifying the current state of earthquake hazards in Nepal. Applied Computing and Geosciences, 10, 100058.

    Article  Google Scholar 

  • Pasari, S., Simanjuntak, A. V., Mehta, A., & Sharma, Y. (2021b). The current state of earthquake potential on Java Island, Indonesia. Pure and Applied Geophysics, 178(8), 2789–2806.

    Article  Google Scholar 

  • Pasari, S., Simanjuntak, A. V., Mehta, A., & Sharma, Y. (2021c). A synoptic view of the natural time distribution and contemporary earthquake hazards in Sumatra, Indonesia. Natural Hazards, 108(1), 309–321.

    Article  Google Scholar 

  • Pasari, S., Simanjuntak, A. V., & Sharma, Y. (2021d). Nowcasting earthquakes in Sulawesi Island, Indonesia. Geoscience Letters, 8(1), 1–13.

    Article  Google Scholar 

  • Perez-Oregon, J., Angulo-Brown, F., & Sarlis, N. V. (2020). Nowcasting avalanches as earthquakes and the predictability of strong avalanches in the Olami–Feder–Christensen model. Entropy, 22(11), 1228.

    Article  Google Scholar 

  • Pondard, N., & Barnes, P. M. (2010). Structure and paleoearthquake records of active submarine faults, Cook Strait, New Zealand: Implications for fault interactions, stress loading, and seismic hazard. Journal of Geophysical Research: Solid Earth, 115, B12320.

    Article  Google Scholar 

  • Quigley, M., Van Dissen, R., Litchfield, N., Villamor, P., Duffy, B., Barrell, D., Furlong, K., Stahl, T., Bilderback, E., & Noble, D. (2012). Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis. Geology, 40(1), 55–58.

    Article  Google Scholar 

  • Rundle, J. B., & Donnellan, A. (2020). Nowcasting earthquakes in southern California with machine learning: Bursts, swarms and aftershocks may reveal the regional tectonic stress. Earth and Space Science, 7(9), e2020EA001097.

    Article  Google Scholar 

  • Rundle, J. B., Donnellan, A., Fox, G., & Crutchfield, J. P. (2021a). Nowcasting earthquakes by visualizing the earthquake cycle with machine learning: A comparison of two methods. Surveys in Geophysics 1–19.

  • Rundle, J. B., Donnellan, A., Fox, G., Crutchfield, J. P., & Granat, R. (2021b). Nowcasting earthquakes: Imaging the earthquake cycle in California with machine learning. Earth and Space Science, 8(12), e2021EA001757.

    Article  Google Scholar 

  • Rundle, J. B., Holliday, J. R., Graves, W. R., Turcotte, D. L., Tiampo, K. F., & Klein, W. (2012). Probabilities for large events in driven threshold systems. Physical Review E, 86, 021106.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., Gross, S., & Turcotte, D. L. (1995). Boltzmann fluctuations in numerical simulations of nonequilibrium lattice threshold systems. Physical Review Letters, 75, 1658–1661.

    Article  Google Scholar 

  • Rundle, J. B., Luginbuhl, M., Giguere, A., & Turcotte, D. L. (2018). Natural time, nowcasting and the physics of earthquakes: estimation of seismic risk to global megacities. Pure and Applied Geophysics, 175, 647–660.

    Google Scholar 

  • Rundle, J. B., Luginbuhl, M., Giguere, A., & Turcotte, D. L. (2019). Natural time, nowcasting and the physics of earthquakes: Estimation of seismic risk to global megacities. Earthquakes and Multi-Hazards around the Pacific Rim, II, 123–136.

    Article  Google Scholar 

  • Rundle, J. B., Luginbuhl, M., Khapikova, P., Turcotte, D. L., Donnellan, A., & McKim, G. (2020). Nowcasting great global earthquake and tsunami sources. Pure and Applied Geophysics, 177(1), 359–368.

    Article  Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., & Sammis, C. (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of Geophysics, 41(4), 1019.

    Article  Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Donnellan, A., Grant Ludwig, L., Luginbuhl, M., & Gong, G. (2016). Nowcasting earthquakes. Earth and Space Science, 3(11), 480–486.

    Article  Google Scholar 

  • Salditch, L., Stein, S., Neely, J., Spencer, B. D., Brooks, E. M., Agnon, A., & Liu, M. (2020). Earthquake supercycles and long-term fault memory. Tectonophysics, 774, 228289.

    Article  Google Scholar 

  • Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge University Press.

    Book  Google Scholar 

  • Shi, X., Tapponnier, P., Wang, T., Wei, S., Wang, Y., Wang, X., & Jiao, L. (2019). Triple junction kinematics accounts for the 2016 Mw 7.8 Kaikoura earthquake rupture complexity. Proceedings of the National Academy of Sciences, 116(52), 26367–26375.

    Article  Google Scholar 

  • Shi, X., Wang, Y., Liu-Zeng, J., Weldon, R., Wei, S., Wang, T., & Sieh, K. (2017). How complex is the 2016 Mw 7.8 Kaikoura earthquake, South Island, New Zealand. Science Bulletin, 62(5), 309–311.

    Article  Google Scholar 

  • Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., Barnes, P., Wallace, L., Villamor, P., Langridge, R., & Lamarche, G. (2012). National seismic hazard model for New Zealand: 2010 update. Bulletin of the Seismological Society of America, 102(4), 1514–1542.

    Article  Google Scholar 

  • Stirling, M. W., Verry, G. H. M., & Berryman, K. R. (2002). A new seismic hazard model for New Zealand. Bulletin of the Seismological Society of America, 92(5), 1878–1903.

    Article  Google Scholar 

  • Sutherland, R., & Norris, R. J. (1995). Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine Fault: Evidence from Hokuri Creek, South Westland, New Zealand, New Zealand. Journal of Geology and Geophysics, 38, 419–430.

    Article  Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Holliday, J., Martins, J. S., & Ferguson, C. D. (2007). Ergodicity in natural earthquake fault networks. Physical Review E, 75(6), 066107.

    Article  Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Martins, J. S., & Ferguson, C. D. (2003). Ergodic dynamics in a natural threshold system. Physical Review Letters, 91(23), 238501.

    Article  Google Scholar 

  • Van Dissen, R. J., Cousins, J., Robinson, R., & Reyners, M. (1994). The Fiordland earthquake of 10 August 1993: A reconnaissance report covering tectonic setting, peak ground acceleration, and landslide damage. Bulletin of the New Zealand Society for Earthquake Engineering, 27(2), 147–154.

    Article  Google Scholar 

  • Van Dissen, R. J., & Yeats, R. S. (1991). Hope fault, Jordan thrust, and uplift of the seaward Kaikoura Range, New Zealand. Geology, 19(4), 393–396.

    Article  Google Scholar 

  • Varotsos, P., Sarlis, N. V., & Skordas, E. S. (2011). Natural time analysis: the new view of time: Precursory seismic electric signals, earthquakes and other complex time series. Springer Science and Business Media.

    Book  Google Scholar 

  • Wallace, L. M., Beavan, J., McCaffrey, R., Berryman, K., & Denys, P. (2007). Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophysical Journal International, 168(1), 332–352.

    Article  Google Scholar 

  • Wallace, L. M., Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S. Y., & Sheehan, A. F. (2016). Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–704.

    Article  Google Scholar 

  • Wang, T., Wei, S., Shi, X., Qiu, Q., Li, L., Peng, D., Weldon, R. J., & Barbot, S. (2018). The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth and Planetary Science Letters, 482, 44–51.

    Article  Google Scholar 

Download references

Acknowledgements

Neha gratefully acknowledges the anonymous reviewers for their useful comments and suggestions. Some figures are prepared using GMT and ArcGIS software. The second author [Neha] thank587 fully acknowledges the financial support from the CSIR-UGC-NET (Ref. No: 588 1197/CSIR-UGC NET JUNE 2017).

Funding

We also acknowledge the financial support from DST-SERB through a project under MATRICS scheme (File No: MTR/2021/000458). We are also thankful to Integrated Research on Disaster Risk, International Center of Excellence (IRDR ICoE Taipei), Taipei and International Science Council Regional Office for Asia and the Pacific (ISC ROAP) for the financial support through a seed grant for 2018 TC-EHRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Pasari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasari, S., Neha Nowcasting-Based Earthquake Hazard Estimation at Major Cities in New Zealand. Pure Appl. Geophys. 179, 1597–1612 (2022). https://doi.org/10.1007/s00024-022-03021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03021-z

Keywords

Navigation