Skip to main content
Log in

Estimation of 1D Deep Vs Models in Çanakkale and Surrounding Area (Biga Peninsula, NW Turkey) Verified with Numerical Ground Motion Simulation of Moderate-Sized Earthquakes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study aims to determine the 1D deep S-wave velocity structure for Çanakkale Province and the surrounding area (Biga Peninsula, NW Turkey) using the moderate (M ≥ 4.0) earthquakes from the last decade. A total of 540 velocity seismograms with a high S/N ratio are obtained from 218 three-component acceleration records of the 10 earthquakes (4.0 ≤ Mw ≤ 5.3) that occurred in the areas of Ayvacık, Saros, and Çan between 2010 and 2018. A total of 34 strong ground motion stations operated by AFAD are grouped in 27 azimuthal directions, and fundamental mode surface wave group velocity dispersion curves are obtained using the multiple-filter method. First, the observed dispersion curves are utilized for the inversion application to define the 1D deep Vs model. Then they are compared with the theoretical curves of the tuned 1D deep Vs models with the trial-and-error forward method after inversion. The RMS misfits between observed and calculated surface group velocities decrease from 0.6 to 0.2 on average. The dispersion analyses allow for improved seismic velocities and thicknesses of especially the uppermost 4–5 km. The defined 1D deep Vs model of 202 source-station paths are also inferred to obtain an average pseudo-3D deep Vs model. In addition, the velocity models are verified with 1D numerical ground motion simulations for 0.05–1 Hz, including the characterized source models of the earthquakes and 1D shallow soil amplifications. The simulation results are quantitatively evaluated with goodness-of-fit measures considering different frequency bands. Fairly good agreement for waveform first arrival and spectral amplitude (0.05–1 Hz) is achieved. However, the later wave packages at the sites located on thick sediment basins cannot be modeled because of the reverberations in the sediment overlying the engineering bedrock. The test of the pseudo-3D Vs model using broadband (0.05–10 Hz) simulation of the 2017 Lesvos mainshock (Mw 6.3) also indicates that both the phase arrival times (< 1 Hz) and the amplitude spectral decay in the high-frequency range of 1–7 Hz are well modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

modified from JERP, 2005)

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Data availability

Data and material could be provided upon request to author of the manuscript.

Code availability

Robert B. Herrmann online software (http://www.eas.slu.edu/eqc/eqccps.html). Herrmann, R. B. (2013) Computer programs in seismology: An evolving tool for instruction and research, Seism. Res. Lettr. 84, 1081–1088, doi: 10. 1785/0220110096. Generic Mapping Tool online software (https://www.generic-mapping-tools.org/).

References

  • AFAD (2017). 12.02.2017 Ayvacık-Çanakkale Earthquake Report (in Turkish). Prime Ministry Disaster and Emergency Management Authority, Turkey.

  • Aki, K. & Richards, P.G. (1980). Quantitative Seismology: Theory and Methods. W. H. Freeman, San Francisco, California.

  • Aki, K. (1972). Scaling law of earthquake source time function. Geophysical Journal of the Royal Astronomical Society, 31, 3–25. https://doi.org/10.1111/j.1365-246X.1972.tb02356.x

    Article  Google Scholar 

  • Anderson, J. (2004). Quantitative measure of the goodness-of-fit of synthetic seismograms. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, paper 243. Vancouver, B.C., Canada, 1–6 August 2004. Earthquake Engineering Research Institute.

  • Aochi, H., Douglas, J., & Ulrich, T. (2017). Stress accumulation in the Marmara Sea estimated through ground-motion simulations from dynamic rupture scenarios. Geophys Res Lett: Solid Earth, 122, 2219–2235. https://doi.org/10.1002/2016JB013790

    Article  Google Scholar 

  • Asano, K., Iwata, T., Sekiguchi, H., Somei, K., Miyakoshi, K., Aoi, S. & Kunugi, T. (2017). Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions. Earth Planets Space, 69-108. https://doi.org/10.1186/s40623-017-0694-3

  • Bijukchhen, S. M., Takai, N., Shigefuji, M., Ichiyanagi, M., Sasatani, T., & Sugimura, Y. (2017). Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes. Earth Planets Sp., 69, 1–16. https://doi.org/10.1186/s40623-017-0685-4

    Article  Google Scholar 

  • Bolt, B. A. (1987). Seismic strong motion synthetics. Academic Press Inc.

    Google Scholar 

  • Bouchon, M. (1981). A simple method to calculate green’s functions in elastic layered media. Bulletin of the Seismological Society of America, 71, 959–971.

    Article  Google Scholar 

  • Büyüksaraç, A., Tunusluoglu, M.C., Bekler, T., Yalciner, C.Ç., Karaca, Ö., Ekinci, Y.L., Demirci, A. & Dinç, Ş.Ö. (2013). Canakkale Belediyesi Imar Planına Esas Jeolojik-Jeoteknik Etut Projesi (Geological-Geotechnical Investigation Project for the Master Plan of Canakkale Municipality).

  • Çakır, Ö. (2019). Love and Rayleigh waves inverted for vertical transverse isotropic crust structure beneath the Biga Peninsula and the surrounding area in NW Turkey. Geophysical Journal International, 216(3), 2081–2105. https://doi.org/10.1093/gji/ggy538

    Article  Google Scholar 

  • Chimoto, K. & Yamanaka, H. (2011). Tomographic Estimation of Surface-Wave Group Velocity Using Seismic Interferometry in Southern Kanto, Japan. 4th IASPEI / IAEE International Symposium 4–9.

  • Chimoto, K., Karagoz, O., Citak, S., Ozel, O., Yamanaka, H. & Hatayama, K. (2015). Estimation of deep S-wave velocity structures from microtremor array measurements in Zeytinburnu and Tekirdag, Turkey. Proceedings of the 12th SEGJ International Symposium, 18–20 November, The Ito International Research Center, The University of Tokyo, Tokyo, Japan.

  • Chimoto, K., Karagoz, O., Citak, S., Ozel, O., Yamanaka, H. & Hatayama, K. (2016). Microtremor array exploration at damaged sites during the 1912 Murefte Earthquake, Turkey. 5th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion, August 15–17, 2016 Taipei, Taiwan

  • Chimoto, K. & Yamanaka, H. (2020). Tuning S-Wave Velocity Structure of Deep Sedimentary Layers in the Shimousa Region of the Kanto Basin, Japan, Using Autocorrelation of Strong-Motion Records. Bull. Seismol. Soc. Am., 110 (6). https://doi.org/10.1785/0120200156

  • Dalguer, L. A., Miyake, H. & Irikura, K. (2004). Characterization of dynamic asperity source models for simulating strong ground motions. Proceedings of the 13th World Conference on Earthquake Engineering, No 3286.

  • Das, S., & Aki, K. (1977). A numerical study of two-dimensional spontaneous rupture propagation. Geophys J Roy Astr Soc, 50, 643–668.

    Article  Google Scholar 

  • Dhakal, Y. P., Sasatani, T. & Takai, N. (2009). Tuning the deep velocity structure model by 1-D simulation of long-period S- waves. Proceedings of the 9th SEGJ international symposium—imaging and interpretation, Sapporo, Japan, Paper ID 0112 (CD- ROM).

  • Dhakal, Y. P., Yamanaka, H., & Sasatani, T. (2011). Tuning the deep velocity structure model of the Tokyo metropolitan area based on 1-D simulation of long period S-waves. 4th IASPEI/IAEE Int. Symp. 1–11.

  • Dhakal, Y. & Yamanaka, H. (2013). Comparison of existing 3-D velocity models of the Kanto basin in terms of long- period ground motions for the hypothetical Tokai earthquake. Proceedings of the 11th SEGJ International Symposium, Yokohama Japan

  • Dhakal, Y. P., Sasatani, T., & Takai, N. (2011). Validation of the deep velocity structure of the tokachi basin based on 3-D simulation of long-period ground motions. Pure and Applied Geophysics, 168, 1599–1620. https://doi.org/10.1007/s00024-010-0237-3

    Article  Google Scholar 

  • Douglas, J. (2019). Ground motion prediction equations 1964–2019. Report, University of Strathclyde 19 December 2019.

  • Douglas, J., & Aochi, H. (2016). Assessing components of ground-motion variability from simulations for the marmara sea region (Turkey). Bulletin of the Seismological Society of America, 106, 300–306. https://doi.org/10.1785/0120150177

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • Dziewonski, A., Bloch, S., & Landisman, M. (1969). A technique for analysis of transient seismic signals. B Seism Soc Am, 59, 427–444.

    Article  Google Scholar 

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active Fault Map of Turkey with and Explanatory Text. General Directorate of Mineral Research and Exploration (MTA), Special Publication Series, 30, Ankara-Turkey.

  • Haskell, N. A. (1960). Crustal reflections of plane SH waves. J. Geo Phys. Res., 65, 4147–4150.

    Article  Google Scholar 

  • Herrmann, R. B. & Ammon J. (2002). Computer Programs in Seismology, version 3.30, St. Louis University, Missouri.

  • Herrmann, R. B. (2013). Computer programs in seismology: an evolving tool for instruction and research. Seism. Res. Lettr., 84, 1081–1088. https://doi.org/10.1785/0220110096

    Article  Google Scholar 

  • Hisada, Y. (2000). A theoretical omega-squared model considering the spatial variation in slip and rupture velocity. Bulletin of the Seismological Society of America, 90, 387–400. https://doi.org/10.1785/0120000097

    Article  Google Scholar 

  • Iida, M., Yamanaka, H., & Yamada, N. (2005). Wave field estimated by borehole recordings in the reclaimed zone of Tokyo Bay. Bulletin of the Seismological Society of America, 95, 1101–1119. https://doi.org/10.1785/0120040010

    Article  Google Scholar 

  • Irikura, K., & Miyake, H. (2011). Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168, 85–104. https://doi.org/10.1007/s00024-010-0150-9

    Article  Google Scholar 

  • JERP (2005). Report: National Seismic Hazard Maps for Japan (2005). Japan Earthquake Research Promotion, March 23, 2005. Retrieved January 8, 2021, https://www.jishin.go.jp/main/chousa/06mar_yosoku-e/index-e.htm

  • Karagöz, Ö. (2020). Estimation of approximate 1-D velocity models using simulation of ground motions from moderate size earthquakes in Çanakkale and surrounding area. TÜBİTAK Program 3001 Project Report (in Turkish) Project No: 118Y003

  • Karagöz, Ö. & Tan, O. (2022). Source modeling and ground motion simulations for the 2017 Lesvos (Midilli) Earthquake with regional 1D velocity structure. (In preparation)

  • Karagoz, O., Chimoto, K., Citak, S., Ozel, O., Yamanaka, H., & Hatayama, K. (2015). Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region, NW Turkey. Earth, Planets and Space, 67, 176. https://doi.org/10.1186/s40623-015-0320-1

    Article  Google Scholar 

  • Karagoz, O., Chimoto, K., & Yamanaka, H. (2018). Broadband ground-motion simulation of the 24 May 2014 Gokceada (North Aegean Sea) earthquake (Mw 6.9) in NW Turkey considering local soil effects. Bulletin of Earthquake Engineering, 16, 23–43. https://doi.org/10.1007/s10518-017-0207-6

    Article  Google Scholar 

  • Kennet, B. L. N., & Kerry, N. J. (1979). Seismic waves in a stratified half space. Geophys J R Astr Soc, 57, 557–583.

    Article  Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body wave - III. Bulletin of the Seismological Society of America, 81, 2335–2350.

    Article  Google Scholar 

  • Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., & Okuzumi, K. (1990). Estimation of P- and S-wave velocity in deep soil deposits for evaluating ground vibrations in earthquake. J Japan Soc Natural Disaster Science, 9, 1–17. (in Japanese).

    Google Scholar 

  • Kolínský, P. (2004). Surface wave dispersion curves of eurasian earthquakes: the SVAL program. Acta Geodynamics Et Geomaterialia, 2(134), 165–185.

    Google Scholar 

  • Kramer, S. L. (1996). Geotechnical Earthquake Engineering (p. 653). Prentice-Hall.

    Google Scholar 

  • Kubo, H., Dhakal, Y. P., Suzuki, W., Kunugi, T., Aoi, S. & Fujiwara, H. (2016). Estimation of the source process of the 2015 Gorkha, Nepal, earthquake and simulation of long-period ground motions in the Kathmandu basin using a one-dimensional basin structure model. Earth Planets Space, 68-16. https://doi.org/10.1186/s40623-016-0393-5

  • Kurtuluş, C. (2019). Soil parameter determination of national strong ground motion stations. Project Report (in Turkish) No: AFAD-UDAP-G-15–04.

  • Mesimeri, M., Kourouklas, C., Papadimitriou, E., Karakostas, V., & Kementzetzidou, D. (2018). Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophysica, 66, 479–495. https://doi.org/10.1007/s11600-018-0157-7

    Article  Google Scholar 

  • Motosaka, M., Kamata, M., Sugawara, O. & Niwa, M. (1992). Surface wave propagation analysis in the Kanto basin. Earthquake Eng. 10th Word Conf., Baklema Rotterfdam.

  • Mourhatch, R. & Krishnan, S. (2020). Simulation of broadband ground motion by superposing high-frequency empirical green’s function synthetics on low-frequency spectral-element synthetics. Geosciences, 10 (9). https://doi.org/10.3390/geosciences10090339

  • Özmen, T. Ö., Yamanaka, H., Chimoto, K., Çeken, U., Alkan, M. A., Tekin, K., & Ateş, E. (2017). Microtremor exploration for shallow S-wave velocity profiles at stations in local strong motion network in Bursa, Yalova, and Kocaeli in north-western Turkey. Exploration Geophysics, 48(3), 255–263. https://doi.org/10.1071/EG16036

    Article  Google Scholar 

  • Panza, G. F., & Suhadolc, P. (1987). Complete strong motion synthetics. In B. A. Bolt (Ed.), Seismic strong motion synthetics (pp. 205–265). Academic Press Inc.

    Google Scholar 

  • Papadimitriou, P., Kassaras, I., Kaviris, G., Tselentis, G. A., Voulgaris, N., Lekkas, E., Chouliaras, G., Evangelidis, C., Pavlou, K., Kapetanidis, V., Karakonstantis, A., Kazantzidou-Firtinidou, D., Fountoulakis, I., Millas, C., Spingos, I., Aspiotis, T., Moumoulidou, A., Skourtsos, E., Antoniou, V., … Kleanthi, M. (2018). The 12 June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. Journal of Geodynamics, 115, 23–42. https://doi.org/10.1016/j.jog.2018.01.009

    Article  Google Scholar 

  • Petersen, M.D., Frankel, A.D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L, Wesson, R. L., Zeng, Y., Boyd, O.S., Perkins, D. M., Luco, N., Field, E. H., Wills, C. J. & Rukstales, K.S. (2008). Documentation for the 2008 update of the United States national seismic hazard maps. USGS Open-File Rept. 2008–1128

  • Pramatadie, A. M., Yamanaka, H., Chimoto, K., Afnimar,, Koketsu, K., Sakaue, M., Miyake, H., Sengara, I. W. & Sadisun, I. A. (2017). Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia. Exploration Geophysic,. 48 (4), 401-412. https://doi.org/10.1071/EG16043

  • Schiappapietra, E. & Douglas, J. (2020). Modeling the spatial correlation of earthquake ground motion: insights from the literature, data from the 2016-2017 central Italy earthquake sequence and ground-motion simulations. Earth Science Reviews, 203. https://doi.org/10.1016/j.earscirev.2020.103139

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., & Kowada, A. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70, 59–80. https://doi.org/10.1785/gssrl.70.1.59

    Article  Google Scholar 

  • Sözbilir, H., Uzel, B., Sümer, Ö., Eski, S., Softa, M., Tepe, Ç., Özkaymak, Ç. & Baba, A. (2018). Seismic sources of (14 january-20 march 2017) Çanakkale-Ayvacık earthquake swarm. Eskişehir Technical University Journal of Science and Technology B- Theoritical Sciences, 6, 1–17. https://doi.org/10.20290/aubtdb.498805

  • Spudich, P., & Archuleta, R. (1987). Techniques for earthquake ground-motion calculation with application to source parameterization of finite faults, seismic strong motion synthetics. In B. A. Bolt (Ed.), Seismic strong motion synthetics (pp. 205–265). Academic Press Inc.

    Chapter  Google Scholar 

  • Takeo, M. (1985). Near-field synthetic seismograms taking into account of the effects of anelasticity: the effects of anelastic attenuation on seismograms caused by a sedimentary layer. Meteorol Geophys, 36, 245–257. (in Japanese with English abstract).

    Article  Google Scholar 

  • Tan, O., Tapirdamaz, M. C., & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish J. Earth Sci., 17, 405–418.

    Google Scholar 

  • Viegas, G. M., Baise, L. G., & Abercrombie, R. E. (2010). Regional wave propagation in New England and New York. Bulletin of the Seismological Society of America, 100(5A), 2196–2218. https://doi.org/10.1785/0120090223

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of the Generic Mapping Tools released. Eos, 79, 579.

    Article  Google Scholar 

  • Yamanaka, H. (1989). Study on seismic wave propagations in sediment layers with irregular interfaces. PhD Thesis, Tokyo Institute of Technology, January 1989.

  • Yamanaka, H., Chimoto, K., Moroi, T., Ikeura, T., Koketsu, K., Sakaue, M., Nakai, S., Sekiguchi, T., & Oda, Y. (2010). Estimation of surface-wave group velocity in the southern Kanto area using seismic interferometric processing of continuous microtremor data (in Japanese with English abstract). Butsuri-Tansa, 63(5), 409–425. https://doi.org/10.3124/segj.63.409

    Article  Google Scholar 

  • Yamanaka, H., Seo, K., & Samano, T. (1989). Effects of sedimentary layers on surface-wave propagation. Bulletin of the Seismological Society of America, 79(3), 631–644.

    Google Scholar 

  • Zeng, Y., & Anderson, J. G. (1996). A composite source modeling of the 1994 Northridge earthquake using genetic algorithms. Bulletin of the Seismological Society of America, 86, 71–83.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the TÜBİTAK-3001 Program with the project no. 118Y003. All earthquake waveform simulations are carried out on 20 Core (40 nodes) DELL Precision 7820 Tower Workstation, 2xSilver 4114, provided by the project (TÜBİTAK-3001-118Y003). Most of the figures were created using the Generic Mapping Tool (Wessel and Smith 1998). I would like to thank to Prof. Dr. Hiroaki Yamanaka for sharing his computer programs with me. I would like to say my most special thanks to Dr. Onur Tan, who always supports, encourages and motivates me to do my best wherever I am. I also would like to thank him for his support during the improvement of the manuscript. Finally, I would to thank the two anonymous reviewers and Dr. Jordi Julia, the Editor of the journal, for the valuable and constructive comments.

Funding

This study is supported by TÜBİTAK-3001 Program with the project no 118Y003. All earthquake waveform simulations are carried out on 20 Core (40 nodes) DELL-Tower Workstation—Precision T7820, 2xSilver 4114, provided by the project (TÜBİTAK-3001-118Y003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Karagöz.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest or competing interest between the author and/or third person(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagöz, Ö. Estimation of 1D Deep Vs Models in Çanakkale and Surrounding Area (Biga Peninsula, NW Turkey) Verified with Numerical Ground Motion Simulation of Moderate-Sized Earthquakes. Pure Appl. Geophys. 179, 709–745 (2022). https://doi.org/10.1007/s00024-021-02942-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02942-5

Keywords

Navigation