Skip to main content
Log in

Strong-Motion Simulation of the 1988 Indo-Burma and Scenario Earthquakes in NE India by Integrating Site Effects in a Semi-Empirical Technique

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study focuses on the validation and applicability of a recently modified semi-empirical technique (MSET) to integrate site effects. The improvement of MSET by considering site effects has been verified by the data of the 1988 Indo-Burma earthquake (Mw 7.2), which happened in the North Eastern Region (NER) in India. This technique is also used to model a future scenario earthquake (Mw 8.2) in the NER. The required site effects are estimated using Nakamura’s horizontal-to-vertical (H/V) ratio technique for 89 waveform records. The obtained site effects are further used to modify an existing semi-empirical technique. To validate this modification, the strong-motion records of the 1988 Indo-Burma earthquake are simulated for bedrock and surface conditions. Afterwards, the root mean square error (RMSE) of these records is compared with surface records obtained by 14 seismic stations. The records simulated at the surface are well validated well with observed ones as compared to the records simulated at bedrock and hence confirm the reliability of the MSET. The improved performance of the MSET after incorporation of site effects validates the approach of the present work and will prove to be significant for simulation of earthquake surface conditions in any region. Further, this improved MSET is used to simulate strong-motion records of a future scenario earthquake (Mw 8.2) with the same epicentral location. The iso-acceleration maps are prepared from simulated records for both cases (Mw 7.2 and 8.2), which provide peak ground acceleration (PGA) values of more than 500 and 1000, respectively, for near-field regions. The obtained results are of significant interest for seismic hazard assessment of NE India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

COSMOS, Virtual Data Centre (VDC).

Code availability (software application or custom code).

Not applicable.

References

  • Acharyya, S. K., Mitra, N. D., & Nandy, D. R. (1986). Regional geology and tectonic setting of northeast India and adjoining region. Memoirs of the Geological Survey of India, 119, 61–72.

    Google Scholar 

  • Aki, K. (1988). Local site effect on ground motion. In Proc Earthquake Eng Soil Dyn II (pp. 103–155).

  • Apostolidis, P. I., Raptakis, D. G., Pandi, K. K., Manakou, M. V., & Pitilakis, K. D. (2006). Definition of subsoil structure and preliminary ground response in Aigion city (Greece) using microtremor and earthquakes. Soil Dynamics and Earthquake Engineering, 26(10), 922–940.

    Google Scholar 

  • Baranowski, J., Armbruster, J., Seeber, L., & Molnar, P. (1984). Focal depths and fault plane solutions of earthquakes and active tectonics of the Himalaya. Journal of Geophysical Research, 89, 6918–6928.

    Google Scholar 

  • Bilham, R., & England, P. (2001). Plateau “pop-up” in the great 1897 Assam earthquake. Nature, 410, 806–809. https://doi.org/10.1038/35071057

    Article  Google Scholar 

  • Bonilla, L., Steidl, J., Lindley, G., Tumarkin, A., & Archuleta, R. (1997). Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda, and H/V methods. Bulletin of the Seismological Society of America, 87(3), 710–730.

    Google Scholar 

  • Boore, D. M. (1983). Stochastic simulation of high-frequency ground motion based on seismological models of radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.

    Google Scholar 

  • Boore, D. M., & Atkinson, C. M. (1987). Stochastic prediction of ground motion and spectral response parameters at hard rock sites in eastern North America. Bulletin of the Seismological Society of America, 77, 440–467.

    Google Scholar 

  • Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60, 29–61.

    Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves from earthquakes. Geophysical Research, 75, 4997–5009.

    Google Scholar 

  • Castro, R. R., Mucciarelli, M., Pacor, F., & Petrungaro, C. (1997). S-wave site response using horizontal to vertical spectral ratios. Bulletin of the Seismological Society of America, 87, 256–260.

    Google Scholar 

  • Chen, W. P., & Molnar, P. (1990). Source parameters of earthquakes and intraplate deformation beneath the Shillong Plateau and northern Indo-Burma ranges. Journal of Geophysical Research, 95, 12527–12552. https://doi.org/10.1029/JB095iB08p12527

    Article  Google Scholar 

  • Chopra, S., Kumar, D., Rastogi, B. K., Choudhury, P., & Yadav, R. B. S. (2012). Estimation of site amplification functions in Gujarat region, India, Natural Hazards. https://doi.org/10.1007/s11069-012-0116-6

  • Curray, J. R., Emmel, F. J., Moore, D. G., Raitt, R. W. (1982). In A. E. M. Nairn, & F. G. Stehli (Eds.) Structure tectonics and geological history of the northeastern Indian ocean (pp 399–450). New York: Plenum.

    Google Scholar 

  • Douglas, J., & Aochi, H. (2008). A survey of techniques for predicting earthquake ground motions for engineering purposes. Surveys in Geophysics, 2008(29), 187–220. https://doi.org/10.1007/s10712-008-9046-y

    Article  Google Scholar 

  • Dutta, T. K. (1964). Seismicity of Assam—Zones of tectonic activity. Bulletin of the National Geophysical Research Institute, 2, 152–163.

    Google Scholar 

  • Evans, P. (1964). The tectonic framework of Assam. Geological Society of India, 5, 80–96.

    Google Scholar 

  • Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the Seismological Society of America, 85, 1127–1143.

    Google Scholar 

  • Field, E. H., Jacob, K. H., & Hough, S. H. (1992). Earthquake site response estimation: A weak-motion case study. Bulletin of the Seismological Society of America, 82, 2283–2307.

    Google Scholar 

  • Firat, S., Isik, N. S., Arman, H., Demir, M., & Vural, I. (2016). Investigation of the soil amplification factor in the Adapazari region. Bulletin of Engineering Geology and the Environment, 75, 141–152. https://doi.org/10.1007/s10064-015-0731-z

    Article  Google Scholar 

  • Gupta, H. K., Rajendran, K., & Singh, H. N. (1986). Seismicity of Northeast India region: Part I: The database. Journal of the Geological Society of India, 28, 345–365.

    Google Scholar 

  • Hanks, T. C., & McGuire, R. K. (1981). The character of high-frequency ground motion. Bulletin of the Seismological Society of America, 71, 2071–2095.

    Google Scholar 

  • Irikura, K. (1986). Prediction of strong acceleration motion using empirical Green’s function. In Proceedings of the 7th Japan earthquake engineering symposium (pp 151–156).

  • Irikura, K., & Kamae, K. (1994). Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique. Ann Geofis XXXVII, 6, 1721–1743.

    Google Scholar 

  • BIS IS 1893–2002. (2002). Indian standard criteria for earthquake resistant design of structures, part 1—General provision and buildings. New Delhi: Bureau of Indian Standard.

  • Jade, S., Mukul, M., Bhattacharya, A. K., Vijayan, M. S. M., Jaganathan, S., Kumar, A., Tiwari, R. P., Kumar, A., Kalita, S., Sahu, S. C., Krishna, A. P., Gupta, S. S., Murthy, M. V. R. L., & Gaur, V. K. (2007). Estimates of interseismic deformation in Northeast India from GPS measurements. Earth and Planetary Science Letters, 263, 221–234.

    Google Scholar 

  • Joshi, A. (2004). A simplified technique for simulating wide band strong ground motion for two recent Himalaya earthquakes. Pure and Applied Geophysics, 161, 1777–1805.

    Google Scholar 

  • Joshi, A., Kumar, P., & Arora, S. (2014). Use of site amplification, anelastic attenuation for determination of source parameters of the Sikkim earthquake of 18 September, 2011 using far field strong motion data. Natural Hazards, 70, 217–235.

    Google Scholar 

  • Joshi, A., Kumari, P., Sharma, M. L., Ghosh, A. K., Agarwal, M. K., & Ravikiran, A. (2012a). A strong motion model of the 2004 great Sumatra earthquake: Simulation using a modified semi empirical method. Journal of Earthquake and Tsunami, 6, 1–29.

    Google Scholar 

  • Joshi, A., & Midorikawa, S. (2004). A simplified method for simulation of strong ground motion using rupture model of the earthquake source. Journal of Seismology, 8, 467–484.

    Google Scholar 

  • Joshi, A., & Mohan, K. (2008). Simulation of accelerograms from simplified deterministic approach for the 23rd October 2004 Niigata-ken Chuetsu earthquake. Journal of Seismology, 12, 35–51.

    Google Scholar 

  • Joshi, A., Singh, S., & Giroti, K. (2001). The simulation of ground motions using envelope summations. Pure and Applied Geophysics, 158, 877–901.

    Google Scholar 

  • Kameda, H., & Sugito, M. (1978). Prediction of strong earthquake motions by evolutionary process model. In Proceedings of the sixth Japan earthquake engineering symposium (pp. 41–48).

  • Kanamori, H. (1979). A semi empirical approach to prediction of long period ground motions from great earthquakes. Bulletin of the Seismological Society of America, 69, 1645–1670.

    Google Scholar 

  • Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 1073–1095.

    Google Scholar 

  • Kayal, J. R. (1987). Microseismicity and source mechanism study: Shillong Plateau, northeast India. Bulletin of the Seismological Society of America, 77, 184–194.

    Google Scholar 

  • Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. New Delhi: Capital.

    Google Scholar 

  • Kayal, J. R., Arefiev, S. S., Barua, S., Hazarika, D., Gogoi, N., Kumar, A., Chowdhury, S. N., & Kalita, S. (2006). Shillong plateau earthquakes in northeast India region: Complex tectonic model. Current Science, 19(1), 109–114.

    Google Scholar 

  • Kayal, J. R., Arefiev, S., Baruah, S., Hazarika, D., Gogoi, N., Gautam, J. L., Baruah, S., Dorbath, C., & Tatevossian, R. (2012). Large and great earthquakes in the Shillong plateau-Assam valley area of Northeast India region: Pop-up and transverse tectonics. Tectonophysics, 532–535, 186–192.

    Google Scholar 

  • Khan, P. K., Ghosh, M., Chakraborty, P. P., & Mukherjee, D. (2011). Seismic b-value and the assessment of ambient stress in northeast India. Pure and Applied Geophysics, 168, 1693–1706. https://doi.org/10.1007/s00024-010-0194-x

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. Engineering, 6, 653.

    Google Scholar 

  • Kumar, D., Teotia, S. S., & Khattari, K. N. (1997). The representation of attenuation charactersticks of strong ground motion observed in the 1996 Dharamshala and 1991 Uttarkashi earthquakes by available Empirical relations. Current Science, 73, 543–548.

    Google Scholar 

  • Kumar, P., Joshi, A., Kumar, S., & Sandeep, L. S. (2018). Determination of site effect and anelastic attenuation at Kathmandu, Nepal Himalaya region and its use in estimation of source parameters of 25 April 2015 Nepal earthquake Mw = 7.8 and its aftershocks including the 12 May 2015 Mw = 7.3 event. Natural Hazards, 91, 1003–1023.

    Google Scholar 

  • Kumar, P., Joshi, A., Sandeep Kumar, A., & Chadha, R. K. (2015). Detailed attenuation study of shear waves in the Kumaon Himalaya, India, using the inversion of strong-motion data. Bulletin of the Seismological Society of America, 105, 1836–1851.

    Google Scholar 

  • Kumari, R., Kumar, P., & Kumar, N. (2020). Role of site effect for the evaluation of attenuation characteristics of P, S and coda waves in Kinnaur region, NW Himalaya. Journal of Earth System Science, 129(191), 1–18.

    Google Scholar 

  • Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83, 1574–1594.

    Google Scholar 

  • Luzon, F., Gil-Zepeda, S. A., Sanchez-Sesma, F. J., & Ortiz-Aleman, C. (2004). Three-dimensional simulation of ground motion in the Zafarraya Basin (Southern Spain) up to 1.335 Hz under incident plane waves. Geophysical Journal International, 156(3), 584–594.

    Google Scholar 

  • Mahajan, A. K., Gupta, V., & Thakur, V. C. (2012). Macroseismic field observations of 18 September 2011 Sikkim earthquake. Natural Hazards, 63, 589–603.

    Google Scholar 

  • Mendoza, C., & Hartzell, S. (1988). Inversion for slip distribution using teleseismic P waveforms, North Palm Springs, Borah Peak, and Michoacan earthquakes. Bulletin of the Seismological Society of America, 78, 1092–1111.

    Google Scholar 

  • Midorikawa, S. (1993). Semi empirical estimation of peak ground acceleration from large earthquakes. Tectonophysics, 218, 287–295.

    Google Scholar 

  • Mitchel, A. H. G. (1981). Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. Journal of the Geological Society of London, 138, 109–122.

    Google Scholar 

  • Mitra, S., Priestley, K., Bhattacharyya, A. K., & Gaur, V. K. (2005). Crustal structure and earthquake focal depths beneath northeastern India and south Tibet. Geophysical Journal International, 160, 227–248.

    Google Scholar 

  • Mittal, H., Kumar, A., & Ramhmachhuani, R. (2012). Indian national strong motion instrumentation network and site characterization of its stations. International Journal of Geosciences, 3(6), 1151–1167.

    Google Scholar 

  • Mohamed, A. M. E., Hafiez, H. E. A., & Taha, M. A. (2013). Estimating the near-surface site response to mitigate earthquake disasters at the October 6th city, Egypt, using HVSR and seismic techniques. NRIAG Journal of Astronomy and Geophysics, 2, 146–165.

    Google Scholar 

  • Molnar, P. (1987). The distribution of intensity associated with the great 1897 Assam earthquake and constraints on the extent of rupture. Journal of the Geological Society of India, 30, 13–27.

    Google Scholar 

  • Mukhopadhyay, M. (1992). On earthquake focal mechanism studies for the Burmese arc. Current Science, 1, 72–88.

    Google Scholar 

  • Nakamura, Y. (1989). A method for dynamic characteristics of estimation of subsurface using microtremor on the ground. Q. Rep. RTRI 30, 1.

  • Nandy, D.R. (2001). Geodynamics of Northeastern India and Adjoining Re-gion (p 209). ABC Publ., Kolkata, India.

    Google Scholar 

  • Narayan, J. P., Sharma, M. L., & Kumar, A. (2002). A seismological report on the 26 January 2001 Bhuj, India earthquake. Seismological Research Letters, 73(3), 343–355.

    Google Scholar 

  • Nath, S. K., Raj, A., Thingbaijam, K. K. S., & Kumar, A. (2009). ground Motion synthesis and seismic scenario in guwahati city—A stochastic approach. Seismological Research Letters, 80(2), 233–242. https://doi.org/10.1785/gssrl.80.2.233

    Article  Google Scholar 

  • Nath, S. K., Sengupta, P., & Kayal, J. R. (2002). Determination of site response at Garhwal Himalayas from the aftershock sequence of 1999 Chamoli earthquake. Bulletin of the Seismological Society of America, 92, 1071–1081.

    Google Scholar 

  • Oldham, R. D. (1899). Report on the great earthquake of the 12th June 1897. Memoirs. Memoirs of the Geological Survey of India (p. 379).

  • Onishi, Y., Horike, M., & Kawamoto, Y. (2004). A method for simulating three-component, near-fault, strong ground motions using stochastic green's function.

  • Pandey, A. K., Chingtham, P., & Roy, P. N. S. (2017). Homogeneous earthquake catalog for Northeast region of India using robust statistical approaches. Geomatics, Natural Hazards and Risk, 8, 1–15.

    Google Scholar 

  • Raghukanth, S. T. G., & Das, S. K. (2009). Deterministic seismic scenarios for North East India. Journal of Seismology. https://doi.org/10.1007/s10950-009-9158-y

    Article  Google Scholar 

  • Raghukanth, S. T. G., & Kavitha, B. (2014). Ground motion relations for active regions in India. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-014-0807-x

    Article  Google Scholar 

  • Roy, P. N. S., Chowdhury, S., Sarkar, P., & Mondal, S. K. (2015). Fractal study of seismicity in order to characterize the various tectonic blocks of North-east Himalaya, India. Natural Hazard, 77, S5–S18.

    Google Scholar 

  • Sandeep, A., Joshi, S. K. S., Kumar, P., Lal, S., Vandana, K., & Singh, R. S. (2017b). Source model estimation of the 2005 Kyushu Earthquake, Japan using Modified Semi Empirical Technique. Journal of Asian Earth Sciences, 147, 240–253.

    Google Scholar 

  • Sandeep, J. A., Devi, S., Kumar, P., Sah, S. K., & Lal, S. (2019a). Strong motion generation area modelling of the 2008 Iwate earthquake, Japan using modified semi-empirical technique. Journal of Earth System Science, 128, 202. https://doi.org/10.1007/s12040-019-1221-7

    Article  Google Scholar 

  • Sandeep, J. A., Kamal, K. P., & Kumar, A. (2014a). Effect of frequency dependent radiation pattern in simulation of high frequency ground motion of Tohoku earthquake using modified semi empirical method. Natural Hazards, 73, 1499–1521.

    Google Scholar 

  • Sandeep, J. A., Kamal, K. P., Kumar, A., & Dhibar, P. (2015). Modeling of strong motion generation areas of the Niigata, Japan, earthquake of 2007 using modified semi empirical technique. Natural Hazards, 77, 933–957.

    Google Scholar 

  • Sandeep, J. A., Kamal, K. P., & Kumari, P. (2014b). Modeling of strong motion generation area of the Uttarkashi earthquake using modified semi-empirical approach. Natural Hazards, 73, 2041–2066.

    Google Scholar 

  • Sandeep, J. A., Kumari, P., Kumar, P., Sah, S. K., Lal, S., & Singh, N. P. (2020a). Strong ground motion simulation techniques—A review in world context. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-020-05583-5

    Article  Google Scholar 

  • Sandeep, J. A., Kumari, P., Lal, S., & Vandana, K. P. (2017a). Emergence of the semi-empirical technique of strong ground motion simulation: A review. Journal of the Geological Society of India, 89, 719–772.

    Google Scholar 

  • Sandeep, J. A., Lal, S., Kumar, P., & Vandana, S. K. (2017c). Simulation of strong ground motion of the 2009 Bhutan Earthquake using modified semi empirical technique. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1663-2

    Article  Google Scholar 

  • Sandeep, J. A., Sah, S. K., Kumar, P., & Lal, S. (2019b). Modelling of strong motion generation areas for a great earthquake in central seismic gap region of Himalayas using the modified semi-empirical approach. Journal of Earth System Science. https://doi.org/10.1007/s12040-019-1126-5

    Article  Google Scholar 

  • Sandeep, J. A., Sah, S. K., Kumar, P., Lal, S., & Devi, S. (2019c). Modeling of 2011 IndoNepal earthquake and scenario earthquakes in the Kumaon Region and comparative attenuation study using PGA distribution with the Garhwal Region. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02232-1

    Article  Google Scholar 

  • Sandeep, K.P., & Joshi, A. (2020). Emerging techniques to simulate strong ground motion. In P. Samui, B. Dixon, D. Tien Bui (Eds.), Basics of computational geophysics (1st ed., pp. 33–46). Elsevier Inc.

  • Sandhu, M., Sharma, B., Mittal, H., Chingtham, P. (2020). Analysis of the Site Effects in the North East Region of India Using the Recorded Strong Ground Motions from Moderate Earthquakes. Journal of Earthquake Engineering, https://doi.org/10.1080/13632469.2020.1724214

    Article  Google Scholar 

  • Seeber, L., & Armbruster, J. (1981). Great detachment earthquakes along the Himalayan arc and long-term forecasts. In D. W. Simpson & P. G. Richards (Eds.), Earthquake prediction: An international review (pp. 259–277). (Washington I)C: Am. Geophys. Union Maurice Ewing Series 4.

  • Tandon, A. N., & Srivastava, H. N. (1975). Focal mechanism of some recent Himalayan earthquakes and regional plate tectonics. Bulletin of the Seismological Society of America, 65, 963–969.

    Google Scholar 

  • Wells, L. D., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Yu, G., Khattri, K. N., Anderson, J. G., Brune, J. N., & Zeng, Y. (1995). Strong ground motion from the Uttarkashi, Himalaya, India, earthquake: Comparison of observations with synthetics using the composite source model. Bulletin of the Seismological Society of America, 85, 31–50.

    Google Scholar 

  • Zeng, Y., Anderson, J. G., & Su, F. (1994). A composite source model for computing realistic synthetic strong ground motions. Geophysical Research Letters, 21, 725–728.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dept. of Geophysics, Banaras Hindu University, Varanasi, for providing the basic research facility. The work presented in this paper is an outcome of the sponsored project from the Institute of Eminence (IoE) cell, Banaras Hindu University with project reference number IoE (6031). Dr. Preeti is thankfully acknowledged for her efforts to improve the quality of the manuscript. Data employed in this work were obtained from COSMOS VDC (https://www.strongmotioncenter.org/vdc/scripts/default.plx), which is gratefully acknowledged. Authors PK and Monika thankfully acknowledge the Director, Wadia Institute of Himalayan Geology, Dehradun.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Sandeep, Kumar, P. et al. Strong-Motion Simulation of the 1988 Indo-Burma and Scenario Earthquakes in NE India by Integrating Site Effects in a Semi-Empirical Technique. Pure Appl. Geophys. 178, 2839–2854 (2021). https://doi.org/10.1007/s00024-021-02791-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02791-2

Keywords

Navigation