Skip to main content
Log in

Configuration of Late Archaean Chilimanzi and Razi Suites of Granites, South-Central Zimbabwe Craton, From Gravity Modelling: Geotectonic Implications

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The subsurface geometry of five representative late Archaean ‘Chilimanzi and Razi’ suite plutons in the Zimbabwe craton (ZC) has been investigated by gravity modelling constrained in part by surface geology, density measurements and seismic information, to determine their 3D configuration and infer tectonic context of emplacement. The generally K-rich, massive, homogeneous monzogranites are characterised by large Bouguer gravity lows (up to − 30 mGal amplitude) whose gradients outline their spatial extent well. The southernmost plutons and their anomalies have general trends paralleling the North Marginal Zone (NMZ) of the Limpopo orogenic belt (LB). Predictive gravity models indicate that the density contrast of the Chivi batholith (CB) adjacent to the ‘volcanic arc-like’ Belingwe greenstone belt extends to a depth of about 13 km. The nearby Razi pluton (RP) which intrudes the ZC-LB boundary appears to have been emplaced at shallower depths/levels. The gravity model suggests a thickness of about 5–6 km, and a moderate to shallow dip to the southeast under the NMZ, compatible with syn-kinematic intrusion during overthrust of the LB over the ZC. The smallest Nalatale granite (Ng) is on average 2.5 km thick under the Fort Rixon greenstone belt but includes a root up to 4.5 km thick under the anomaly peak, and a steep contact with the tonalite/gneiss to the east. These granites follow the general power-law for pluton dimension and are similar in this respect to the classical wedge-shaped plutons, extending largely in one direction, with large aspect ratios (Length (L)/Thickness (T) > 7). However, the overall shape of the RP is typical of a diapir (Width (W) < T), although it may have been affected by the LB deformation. Gravity modelling along a NS traverse crossing the Chilimanzi batholith (ChB), the Masvingo greenstone belt (MGB) and the Zimbabwe granite (ZG) indicate a thickness of around 6 km for the dense greenstone belt with a thickness of about 8.5 km for the adjacent ZG. The ‘complex’ shaped ChB shows a 2 km thick tabular body with a root zone extending to ~ 4.5 km depth on the south end, adjacent to the greenstone belt; typical of the so-called flat-floored plutons with a gently dipping floor towards the root zone. These two plutons roughly follow the power-law for laccolith/batholith dimensions (W/T > 5; L/T > 15). Overall, the CB and the ZG are interpreted as massive, deep-rooted batholithic intrusions (L/T ≅ 10), contrary to some geological interpretations of these late, post-kinematic intrusions as sheet-like bodies emplaced at relatively shallow levels in the crust. On the other hand, the ChB appears to be a tabular intrusion, probably fed by dykes; it exhibits a lateral extent much greater than the vertical one, outlining a sheeted geometry (W/T > 7; L/T > 18). The geophysical evidence, together with geological and fabric data, support and/or confirm the two main granite configurations: sheets and batholith; and thus also confirm the two main modes of emplacement: dyke and diapirism or ballooning plutonism. This is consistent with other known batholiths on the ZC but considered unusual for plutons of the same age and spatially close when compared to other Archaean cratons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified after ZGS 1994; Ranganai et al. 2008 (western part), Gwavava and Ranganai 2009 (eastern part))

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ameglio, L., & Vigneresse, J. L. (1999). Geophysical imaging of the shape of granitic intrusions at depth: A review. Geological Society of London Special Publication,168, 39–54.

    Google Scholar 

  • Ameglio, L., Vigneresse, J. L., & Bouchez, J. L. (1997). Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. In J. L. Bouchez, D. H. W. Hutton, & W. E. Stephens (Eds.), Granite: From segregation of melt to emplacement fabrics (pp. 199–214). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Anhaeusser, C. R. (2014). Archaean greenstone belts and associated granitic rocks—A review. Journal of African Earth Sciences,100, 684–732.

    Google Scholar 

  • Becker, J. K., Siegesmund, S., & Jelsma, H. A. (2000). The Chinamora batholith, Zimbabwe: Structure and emplacement-related magnetic rock fabric. Journal of Structural Geology,22, 1837–1853.

    Google Scholar 

  • Berger, M., & Rollinson, H. (1997). Isotopic and geochemical evidence for crust-mantle interaction during late Archaean crustal growth. Geochemica et Cosmochimica Acta,61(22), 4809–4829.

    Google Scholar 

  • Bickle, M. J., & Nisbet, E. G. (Eds.) (1993). The geology of the Belingwe greenstone belt, Zimbabwe: A study of the evolution of Archaean continental crust. Geological Society of Zimbabwe Special Publication 2, A.A. Balkema, Rotterdam.

  • Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blenkinsop, T. G. (2011). Archean magmatic granulites, diapirism, and Proterozoic reworking in the Northern Marginal Zone of the Limpopo Belt. In D. D. van Reenen, J. D. Kramers, S. McCourt & L. L. Perchuk (Eds.), Origin and evolution of precambrian high-grade Gneiss Terranes, with special emphasis on the Limpopo Complex of Southern Africa (pp. 1–24). Geological Society of America Memoir 207. https://doi.org/10.1130/2011.1207(13).

  • Blenkinsop, T. G., Martin, A., Jelsma, H. A., & Vinyu, M. L. (1997). The Zimbabwe Craton: Summary of greenstone belt geology. In M. J. de Wit, & L. D. Ashwal (Eds.), Greenstone Belts. Oxford monograph on geology and geophysics (pp. 567–580). Clarendon Press, Oxford.

  • Blenkinsop, T. G., Oberthur, T., & Mapeto, O. (2000). Gold mineralization in the Mazowe area, Harare–Bindura–Shamva greenstone belt, Zimbabwe: I. Tectonic controls on mineralization. Mineralium Deposita,35, 126–137.

    Google Scholar 

  • Blenkinsop, T. G., & Treloar, P. J. (2001). Tabular intrusion and folding of the late Archaean Murehwa granite, Zimbabwe, during regional shortening. Journal of the Geological Society of London,158, 653–664.

    Google Scholar 

  • Boschetti, F. (2005). Improved edge detection and noise removal in gravity maps via the use of gravity gradients. Journal of Applied Geophysics,57, 213–225.

    Google Scholar 

  • Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation,35, 88–95. https://doi.org/10.1016/j.jag.2014.013.

    Article  Google Scholar 

  • Campbell, S. D. G., Oesterlen, P. M., Blenkinsop, T. G., Pitfield, P. E. J., & Munyanyiwa, H. (1992). A Provisional 1:2 500 000 scale Tectonic map and the tectonic evolution of Zimbabwe. Annals of the Zimbabwe Geological Survey,XVI(1991), 31–50.

    Google Scholar 

  • Campbell, S. D. G., & Pitfield, P. E. J. (1994). Structural controls of gold mineralization in the Zimbabwe Craton- Exploration Guidelines. Zimbabwe Geological Survey Bulletin,101, 270.

    Google Scholar 

  • Cassidy, K. F., Groves, D. I., & McNaughton, N. J. (1998). Late-Archean granitoid-hosted lode-gold deposits, Yilgarn Craton, Western Australia: Deposit characteristics, crustal architecture and implications for ore genesis. Ore Geology Reviews,13(1–5), 65–102.

    Google Scholar 

  • Castro, A. (1987). On granitoid emplacement and related structures: A review. Geologische Rundschau,76(1), 101–124.

    Google Scholar 

  • Clark, D. A. (1997). Magnetic petrophysics and magnetic petrology: Aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology and Geophysics,17(2), 83–103.

    Google Scholar 

  • Clemens, J. D. (2005). Granites and granitic magmas: Strange phenomena and new perspectives on some old problems. Proceedings of the Geologists’ Association,116, 9–16.

    Google Scholar 

  • Collins, W. J., Van Kranendonk, M. J., & Teyssier, C. (1998). Partial convective overturn of Archean crust in the East Pilbara craton, Western Australia- driving mechanisms and tectonic implications. Journal of Structural Geology,20(9–10), 1405–1424.

    Google Scholar 

  • Comeau, M. J., Unsworth, M. J., Ticona, F., & Sunagua, M. (2015). Magnetotelluric images of magma distribution beneath Volcán Uturuncu, Bolivia: Implications for magma dynamics. Geology,43(3), 243–246.

    Google Scholar 

  • Cooper, G. R. J., & Cowan, D. R. (2011). A generalized derivative operator for potential field data. Geophysical Prospecting,59, 188–194.

    Google Scholar 

  • Cordell, L., & McCafferty, A. E. (1989). A terracing operator for physical property mapping with potential field data. Geophysics,54, 621–634.

    Google Scholar 

  • Coward, M. P., & James, P. R. (1974). The deformation patterns of two Archaean greenstone belts in Rhodesia and Botswana. Precambrian Research, 1, 235–258.

  • Coward, M. P., James, P. R., & Wakefield, J. (1976). Northern margin of the Limpopo Mobile belt, southern Africa. Geological Society of America Bulletin,87, 87601–87611.

    Google Scholar 

  • Cruden, A. R. (1998). On the emplacement of tabular granites. Journal of the Geological Society,155(5), 853–862.

    Google Scholar 

  • Cruden, A. R., & McCaffrey, K. J. W. (2001). Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Physics and Chemistry of the Earth A,26(4–5), 303–315.

    Google Scholar 

  • Dehls, J. F., Cruden, A. R., & Vigneresse, J. L. (1998). Fracture control of late Archean pluton emplacement in the northern Slave Province, Canada. Journal of Structural Geology,20(9–10), 1145–1154.

    Google Scholar 

  • Dietl, C., & Koyi, H. (2008). Formation of tabular plutons- results and implications of centrifuge modeling. Journal of Geosciences,53(3–4), 253–261.

    Google Scholar 

  • Duuring, P., Cassidy, K. F., & Hagemann, S. G. (2007). Granitoid-associated orogenic, intrusion-related, and porphyry style metal deposits in the Archean Yilgarn Craton, Western Australia. Ore Geology Reviews,32(1–2), 157–186.

    Google Scholar 

  • Fedo, C. M., Eriksson, K. A., & Blenkinsop, T. G. (1995). Geologic history of the Archaean Buhwa greenstone belt and surrounding granite-gneiss terrain, Zimbabwe, with implications for the evolution of the Limpopo Belt. Canadian Journal Earth Sciences,32, 1977–1990.

    Google Scholar 

  • Ferré, E. C., Galland, O., Montanari, D., & Kalakay, T. J. (2012). Granite magma migration and emplacement along thrusts. International Journal of Earth Sciences (Geol Rundsch),101, 1673–1688. https://doi.org/10.1007/s00531-012-0747-6.

    Article  Google Scholar 

  • Fisk, K., & Hawadi, M. T. (1996). The National gravity dataset of Zimbabwe. Zimbabwe Geological Survey Bulletin,103, 39.

    Google Scholar 

  • Flecha, I., Carbonell, R., Zeyen, H., Marti, D., Palomeras, I., Simancas, F., et al. (2006). Imaging granitic plutons along the IBERSEIS profile. Tectonophysics,420, 37–47.

    Google Scholar 

  • Frei, R., Blenkinsop, T. G., & Schönberg, R. (1999). Geochronology of the late Archaean Razi and Chilimanzi suites of granites in Zimbabwe: Implications for the late Archaean tectonics of the Limpopo belt and Zimbabwe craton. South African Journal of Geology,102, 55–63.

    Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A Geochemical classification for granitic rocks. Journal of Petrology,42(11), 2033–2048.

    Google Scholar 

  • Galadi-Enriquez, E., Galindo-Zaldivar, J., Simancas, J. F., & Exposito, I. (2003). Diapiric emplacement in the upper crust of a granitic body: The La Bazana granites (SW Spain). Tectonophysics,361, 83–96.

    Google Scholar 

  • Gore, J., James, D. E., Zengeni, T. G., & Gwavava, O. (2009). Crustal structure of the Zimbabwe craton and the Limpopo belt of Southern Africa: New constraints from seismic data and implications for its evolution. South African Journal of Geology,112, 213–228.

    Google Scholar 

  • Goulty, N. R., Dobson, A. J., Jones, G. D., Al-Kindi, S. A., & Holland, J. G. (2001). Gravity evidence for diapiric ascent of the Northern Arran Granite. Journal of the Geological Society,158(5), 869–876.

    Google Scholar 

  • Gupta, V. K., & Grant, F. S. (1985). Mineral-exploration aspects of gravity and aeromagnetic surveys in the Sudbury-Cobalt area, Ontario. In W. J. Hinze (Ed.), The utility of regional gravity and magnetic anomaly maps (pp. 392–412). Tulsa: Society of Exploration Geophysicists.

    Google Scholar 

  • Gupta, V. K., Thurston, P. C., & Dusanowskj, T. H. (1982). Constraints upon models of greenstone belt evolution by gravity modeling, Birch-Uchi greenstones belt, Northern Ontario. Precambrian Research,16, 233–255.

    Google Scholar 

  • Gwavava, O., & Ranganai, R. T. (2009). The geology and structure of the Masvingo greenstone belt and adjacent granite plutons from geophysical data, Zimbabwe craton. South African Journal of Geology,112, 119–132. https://doi.org/10.2113/gssajg.112.2.000.

    Article  Google Scholar 

  • Gwavava, O., Swain, C. J., & Podmore, F. (1996). Mechanisms of isostatic compensation of the Zimbabwe and Kaapvaal cratons, the Limpopo Belt and the Mozambique basin. Geophysical Journal International,127, 635–650. https://doi.org/10.1111/j.1365-246X.1996.tb04044.x.

    Article  Google Scholar 

  • Gwavava, O., Swain, C. J., Podmore, F., & Fairhead, J. D. (1992). Evidence of crustal thinning beneath the Limpopo Belt and Lebombo monocline of southern Africa based on regional gravity studies and implications for reconstruction of Gondwana. Tectonophysics,212, 1–20.

    Google Scholar 

  • Haederle, M., & Atherton, M. P. (2002). Shape and intrusion style of the Costal Batholith, Peru. Tectonophysics,345, 17–28.

    Google Scholar 

  • Halla, J., Whitehouse, M. J., Ahmad, T., & Bagai, Z. (2017). Archaean granitoids: An overview and significance from a tectonic perspective. Geological Society London Special Publications,449, 1–18.

    Google Scholar 

  • Harrison, N. M. (1969). The geology of the country around Fort Rixon and Shangani. Rhodesia Geological Survey Bulletin,61, 152.

    Google Scholar 

  • Henkel, H. (1991). Petrophysical properties (density and magnetisation) of rocks from the northern part of the Baltic shield. Tectonophysics,192, 1–19.

    Google Scholar 

  • Henkel, H. (1994). Standard diagrams of magnetic properties and density- a tool for understanding magnetic petrology. Journal of Applied Geophysics,32, 43–53.

    Google Scholar 

  • Hickman, M. H. (1978). Isotopic evidence for crustal reworking in the Rhodesian Archaean craton, southern Africa. Geology,6, 214–216.

    Google Scholar 

  • Hofmann, A., Jagoutz, O., Kroner, A., Dirks, P. H. G. M., & Jelsma, H. A. (2002). The Chirwa dome: Granite emplacement during late Archean thrusting along the northeastern margin of the Zimbabwe craton. South African Journal of Geology,105, 285–300.

    Google Scholar 

  • Horstwood, M. S. A., Nesbitt, R. W., Noble, S. R., & Wilson, J. F. (1999). U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: A reassessment of the timing of craton formation, stabilization and growth. Geology,27, 707–710.

    Google Scholar 

  • Ishihara, S. (1977). The magnetite-series and ilmenitr-series granitic rocks. Mining geology,27, 293–305.

    Google Scholar 

  • Jelsma, H. A., & Dirks, P. H. G. M. (2000). Tectonic evolution of a greenstone sequence in northern Zimbabwe: Sequential early stacking and pluton diapirism. Tectonics,19, 135–152.

    Google Scholar 

  • Jelsma, H. A., & Dirks, P. H. G. M. (2002). Neoarchaean tectonic evolution of the Zimbabwe Craton. In C. M. R. Fowler, C. Ebinger & C. J. Hawkesworth (Eds.), The early earth: Physical, chemical and biological development (pp. 183–211), Geological Society of London Special Publication, vol. 199, London.

  • Jelsma, H. A., van der Beek, P. A., & Vinyu, M. L. (1993). Tectonic evolution of the Bindura–Shamva greenstone belt (northern Zimbabwe): Progressive deformation around diapiric batholiths. Journal of Structural Geology,15, 163–176.

    Google Scholar 

  • Jelsma, H. A., Vinyu, M. L., Valbracht, P. J., Davies, G. R., Wijbrans, J. R., & Verdurmen, E. A. T. (1996). Constraints on Archaean crustal evolution of the Zimbabwe craton: a U–Pb zircon, Sm–Nd and Pb–Pb whole-rock isotope study. Contributions to Mineralogy and Petrology,124, 55–70.

    Google Scholar 

  • Johnson, S. E., Albertz, M., & Paterson, S. R. (2001). Growth rates of dike-fed plutons: Are they compatible with observations in the middle and upper crust? Geology,29(8), 727–730.

    Google Scholar 

  • Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (3rd ed., p. 262). Oxford: Blackwell.

    Google Scholar 

  • Kisters, A. F. M., & Anhaeusser, C. R. (1995). Emplacement features of Archaean TTG plutons along the southern margin of the Barberton greenstone belt, South Africa. Precambrian Research,75, 1–15.

    Google Scholar 

  • Kurian, P. J., Krishna, M. R., Nambiar, C. G., & Murthy, B. V. S. (2001). Gravity field and subsurface geometry of the Kalpatta granite, south India and tectonic significance. Gondwana Research,4(1), 105–111.

    Google Scholar 

  • Laurent, O., Martin, H., Moyen, J. F., & Doucelance, R. (2014). The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos,205, 208–235.

    Google Scholar 

  • Li, Y., Yang, Y., & Liu, T. (2010). Derivative-based techniques for geological contact mapping from gravity data. Journal of Earth Science,21(3), 358–364. https://doi.org/10.1007/s12583-010-0099-8.

    Article  Google Scholar 

  • Lin, S., & Beakhouse, G. P. (2013). Synchronous vertical and horizontal tectonism at late stages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada. Geology,41(3), 359–362.

    Google Scholar 

  • Liodas, N. T., Gébelin, A., Ferré, E. C., & Misgna, G. M. (2013). Deformation coupling between the Archean Pukaskwa intrusive complex and the Hemlo shear zone, Superior Province, Canada. Tectonophysics,608, 1226–1237. https://doi.org/10.1016/j.tecto.2013.06.022.

    Article  Google Scholar 

  • Lopez, S., Fernandez, C., & Castro, A. (2006). Evolution of the Archaean continental crust: Insights from the experimental study of Archaean granitoids. Current Science,91(5), 607–621.

    Google Scholar 

  • Ma, G., Huang, D., & Liu, C. (2016). Step-edge detection filters for the interpretation of potential field data. Pure and Applied Geophysics,173, 795–803. https://doi.org/10.1007/s00024-015-1053-6.

    Article  Google Scholar 

  • Mareschal, J. C., & West, G. F. (1980). A model for Archean tectonism. Part 2: Numerical models for vertical tectonism in greenstone belts. Canadian Journal of Earth Sciences,17, 60–71.

    Google Scholar 

  • McCaffrey, K. J. W., & Petford, N. (1997). Are granitic intrusions scale invariant? Journal of the Geological Society,154, 1–4.

    Google Scholar 

  • McLean, M. A., & Betts, P. G. (2003). Geophysical constraints of shear zones and geometry of the Hiltaba Suite granites in the western Gawler Craton, Australia. Australian Journal of Earth Sciences,50(4), 525–541.

    Google Scholar 

  • Minnitt, R. C. A., & Anhaeusser, C. R. (1992). Gravitational and diapiric structural history of the eastern portion of the Archean Murchison greenstone belt, South Africa. Journal of African Earth Sciences,15, 429–440.

    Google Scholar 

  • Mkweli, S., Kamber, B., & Berger, M. (1995). Westward continuation of the craton-Limpopo Belt tectonic break in Zimbabwe and new age constraints on the timing of the thrusting. Journal of Geological Society London,152, 77–83.

    Google Scholar 

  • Moyen, J. F., Martin, H., Jayananda, M., & Auvray, B. (2003). Late Archaean granites: A typology based on the Dharwar Craton (India). Precambrian Research,127, 103–123.

    Google Scholar 

  • Nelson, D. R. (1998). Granite-greenstone crust formation on the Archaean Earth: A consequence of two superimposed processes. Earth and Planetary Science Letters,158, 109–119.

    Google Scholar 

  • Oberthür, T., Davis, D. W., Blenkinsop, T. G., & Höhndorf, A. (2002). Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics of the Great Dyke, Zimbabwe: Constraints on late Archean events in the Zimbabwe Craton and Limpopo Belt. Precambrian Research,113, 293–305.

    Google Scholar 

  • Oliveira, D. C., Aall’Agnal, R., Silva, J. B. C., & Almeida, J. A. C. (2008). Gravimetric, radiometric, and magnetic susceptibility study of the Paleoproterozoic Redencao and Bannach plutons, eastern Amazonian Craton, Brazil: Implications for architecture and zoning of A-type granites. Journal of South American Earth Sciences,25, 100–115.

    Google Scholar 

  • Owen, R., Mikailhov, A., & Maziti, A. (2002). Groundwater occurrence in crystalline basement aquifers: A GIS based study of a borehole dataset in a uniform granitic terrain in southern Zimbabwe. 3rd Waternet/Warfsa Symposium. http://www.waternetonline.ihe.nl/aboutWN/pdf/Owen&al.pdf.

  • Paterson, S. R., & Vernon, R. H. (1995). Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin,107, 1356–1380.

    Google Scholar 

  • Pawley, M. J., Van Krenendonk, M. J., & Collins, W. J. (2004). Interplay between deformation and magmatism during doming of the Archaean Shaw Granitoid Complex, Pilbara Craton, Western Australia. Precambrian Research,131, 213–230.

    Google Scholar 

  • Peschler, A. P., Benn, K., & Roest, W. R. (2004). Insights on Archean continental geodynamics from gravity modelling of granite–greenstone terranes. Journal of Geodynamics,38, 185–207.

    Google Scholar 

  • Petford, N., & Clemens, J. D. (2000). Granites are not diapiric. Geology Today,16(5), 180–184.

    Google Scholar 

  • Petford, N., Cruden, A. R., McCaffrey, K. J. W., & Vigneresse, J. L. (2000). Granite magma formation, transport and emplacement in the Earth’s crust. Nature,408, 669–673.

    Google Scholar 

  • Phaup, A. E. (1973). Chemical analyses of the rocks, ores and minerals of Rhodesia. Rhodesia Geological Survey Bulletin,71, 297.

    Google Scholar 

  • Pritchard, M. E., & Gregg, P. M. (2016). Geophysical evidence for silicic crustal melt in the continents: Where, what kind, and how much? Elements,12, 121–127.

    Google Scholar 

  • Ramberg, H. (1981). Gravity deformation and the Earth’s crust: Theory, experiments and geological applications (2nd ed., p. 452). London: Academic Press.

    Google Scholar 

  • Ramsay, J. G. (1989). Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. Journal of Structural Geology,11, 191–209.

    Google Scholar 

  • Ranganai, R. T. (1995). Geophysical Investigations of the Granite-Greenstone Terrain in the South-Central Zimbabwe Archaean craton. Unpublished PhD Thesis, University of Leeds, pp 288.

  • Ranganai, R. T. (2012). Gravity and aeromagnetic studies of the Filabusi Greenstone Belt, Zimbabwe Craton: Regional and Geotectonic Implications. International Journal of Geoscences,3(5), 1048–1064. https://doi.org/10.4236/ijg.2012.35106.

    Article  Google Scholar 

  • Ranganai, R. T. (2013). Structural and subsurface relationships between the Fort Rixon-Shangani Greenstone Belt and the Nalatale Pluton, Zimbabwe, as derived from gravity and aeromagnetic data. South African Journal of Geology,116(2), 273–296.

    Google Scholar 

  • Ranganai, R. T., & Ebinger, C. J. (2008). Aeromagnetic and LANDSAT TM structural interpretation for identifying regional groundwater exploration targets, South-Central Zimbabwe Craton. Journal of Applied Geophysics,65, 73–83. https://doi.org/10.1016/j.jappgeo.2008.05.009.

    Article  Google Scholar 

  • Ranganai, R. T., Kampunzu, A. B., Atekwana, E. A., Paya, B. K., King, J. G., Koosimile, D. I., et al. (2002). Gravity evidence for a larger Limpopo Belt in Southern Africa and geodynamic implications. Geophysical Journal International,149, F9–F14. https://doi.org/10.1046/j.1365-246X.2002.01703.x.

    Article  Google Scholar 

  • Ranganai, R. T., Whaler, K. A., & Ebinger, C. E. (2008). Gravity anomaly patterns in the south-central Zimbabwe Archaean craton and their geological interpretation. Journal of African Earth Sciences,51, 257–276.

    Google Scholar 

  • Ranganai, R. T., Whaler, K. A., & Ebinger, C. E. (2015) Aeromagnetic interpretation in the south-central Zimbabwe Craton: (reappraisal of) crustal structure and tectonic implications. International Journal of Earth Sciences. http://dx.doi.org/10.1007/s00531-015-1279-7.

  • Rey, P. F., & Houseman, G. (2006). Lithospheric scale gravitational flow: The impact of body forces on orogenic processes from Archaean to Phanerozoic. Geological Society London Special Publication,253, 153–167.

    Google Scholar 

  • Ridley, J. R., Vearncombe, J. R., & Jelsma, H. A. (1997). Relations between greenstone belts and associated granitoids. In M. J. de Wit & L. D. Ashwal (Eds.), greenstone belts (pp. 376–397). Oxford: Clarendon Press.

    Google Scholar 

  • Robertson, I. D. M. (1973). Potash granites of the southern edge of the Rhodesian craton and the northern granulite zone of the Limpopo belt. In L. A. Lister (Ed.), Symposium on granites, gneisses and related rocks (pp. 265–276), Geological Society of South Africa Special Publication 3.

  • Robertson, I. D. M. (1974). Explanation of the geology south of Chibi. Rhodesia Geological Survey Short Report 41, Salisbury, pp 40.

  • Rollinson, H. R., & Blenkinsop, T. G. (1995). The magmatic, metamorphic and tectonic evolution of the Northern Marginal Zone of the Limpopo Belt in Zimbabwe. Journal of the Geological Society of London,152, 65–75.

    Google Scholar 

  • Siegesmund, S., Jelsma, H., Becker, J., Davies, G., Layer, P., van Dijk, E., et al. (2002). Constraints on the timing of granite emplacement, deformation and metamorphism in the Shamva area, Zimbabwe. International Journal of Earth Sciences,91, 20–34.

    Google Scholar 

  • Simpson, R. W., Jachens, R. C., Blakely, R. J., & Saltus, R. W. (1986). A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. Journal of Geophysical Research, 91(B8), 8348–8372.

  • Singh, A. P., Kumar, V. V., & Mishra, D. C. (2004). Subsurface geometry of Hyderabad granite pluton from gravity and magnetic anomalies and its role in the seismicity around Hyderabad. Current Science,86(4), 580–586.

    Google Scholar 

  • Smith, C. B., Sims, K., Chimuka, L., Duffin, A., Beard, A. D., & Townend, R. (2004). Kimberlite metasomatism at Murowa and Sese pipes, Zimbabwe. Lithos,76, 219–232.

    Google Scholar 

  • Smith, W. H. F., & Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics,16, 222–227.

    Google Scholar 

  • Snowden, P. A. (1984). Non-diapiric batholiths in the north of the Zimbabwe Shield. In A. Kröner & R. Greiling (Eds.), Precambrian tectonics illustrated (pp. 135–145). Stuttgart: E. Schweizerbarts’che Verlagsbuchhandlung.

    Google Scholar 

  • Soesoo, A., & Bons, P. D. (2015). From migmatites to plutons: power law relationships in the evolution of magmatic bodies. Pure and Applied Geophysics,172, 1787–1801.

    Google Scholar 

  • Stettler, E. H., de Beer, J. H., Eberle, D., Ludden, J., & Mareschal, M. (1997). Geophysics and deep structures. In M. J. de Wit & L. D. Ashwal (Eds.), Greenstone belts, Oxford monograph on geology and geophysics (pp. 339–375). Oxford: Clarendon Press.

    Google Scholar 

  • Stettler, E. H., de Beer, J. H., & Kleywegt, R. J. (1990). The structure of the Palmietfontein and Entabeni granite plutons as derived from geophysical data. South African Journal of Geology,93(4), 676–682.

    Google Scholar 

  • Stuart, G. W., & Zengeni, T. G. (1987). Seismic crustal structure of the Limpopo mobile belt, Zimbabwe. Tectonophysics,144, 323–335.

    Google Scholar 

  • Subrahmanyam, C., & Verma, R. K. (1981). Densities and magnetic susceptibilities of Precambrian Rocks of Different Metamorphic Grade (Southern Indian Shield). Journal of Geophysics,49, 101–107.

    Google Scholar 

  • Subrahmanyam, C., & Verma, R. K. (1982). Gravity interpretation of the Dharwar greenstone-gneiss-granite terrain in the southern Indian Shield and its geological implications. Tectonophysics,84, 225–245.

    Google Scholar 

  • Sylvester, P. J. (1994). Archean granite plutons. In K. C. Kondie (Ed.), Archean crustal evolution (pp. 261–314). Amsterdam: Elsevier.

    Google Scholar 

  • Tahiri, A., Simancas, J. F., Azor, A., Galindo-Zaldivar, J., Lodeiro, F. G., El Hadi, H., et al. (2007). Emplacement of ellipsoid-shaped (diapiric?) granite: Structural and gravimetric analysis of the Oulmes granite (Variscan Meseta, Morocco). Journal of African Earth Sciences,48, 301–313.

    Google Scholar 

  • Van Straaten, P. (2002). Rocks for crops: Agrominerals of sub-Saharan Africa. International Council for Research in Agroforestry (ICRAF), Nairobi, Kenya, pp 338.

  • Vigneresse, J. L. (1990). Use and misuse of geophysical data to determine the shape at depth of granitic intrusions. Geological Journal,25(3/4), 249–260.

    Google Scholar 

  • Vigneresse, J. L., & Clemens, J. D. (2000). Granitic magma ascent and emplacement: neither diapirism nor neutral buoyancy. Geological Society Special Publication,174, 1–19.

    Google Scholar 

  • Vigneresse, J. L., Tikoff, B., & Ameglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics,302(3–4), 203–224.

    Google Scholar 

  • Weinberg, R. F. (1999). Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos,46, 393–410.

    Google Scholar 

  • Wellman, P. (2000). Upper crust of the Pilbara Craton, Australia: 3D geometry of a granite/greenstone terrain. Precambrian Research,104, 175–186.

    Google Scholar 

  • Wilson, J. F. (1964). The geology of the country around Fort Victoria and the Bikita Tinfield. Southern Rhodesia Geological Survey Bulletin,58, 147.

    Google Scholar 

  • Wilson, J. F. (1990). A craton and its cracks: some of the behaviour of the Zimbabwe block from the Late Archaean to the Mesozoic in response to horizontal movements, and the significance of some of its mafic dyke fracture patterns. Journal of African Earth Sciences,10, 483–501.

    Google Scholar 

  • Wilson, J. F., Nesbitt, R. W., & Fanning, C. M. (1995). Zircon geochronology of Archaean felsic sequences in the Zimbabwe craton: a revision of greenstone stratigraphy and a model for crustal growth. In M. P. Coward & A. C. Ries (Eds.), Early Precambrian Processes (pp. 109–126), Geological Society Special Publication 95.

  • Won, I. J., & Bevis, M. (1987). Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and FORTRAN subroutines. Geophysics,52, 232–238.

    Google Scholar 

  • Yang, X. M. (2014). Granitoid rocks in southeastern Manitoba: preliminary results of reconnaissance mapping and sampling. Report of Activities 2014 (pp 49–63). Manitoba Mineral Resources, Manitoba Geological Survey.

  • Zegers, T. E. (2004). Granite formation and emplacement as indicators of Archaean tectonic processes. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), The Precambrian earth: Tempos and events (pp. 103–118). Amsterdam: Elsevier.

    Google Scholar 

  • Zeh, A., Gerdes, A., & Barton, J. M., Jr. (2009). Archean Accretion and Crustal Evolution of the Kalahari Craton- the Zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology,50(5), 933–966. https://doi.org/10.1093/petrology/egp027.

    Article  Google Scholar 

  • ZGS. (1994). Zimbabwe Geological 1:1000 000 (7th ed.). Harare: Zimbabwe Geological Survey.

    Google Scholar 

  • Zwaan, J. C., Kanis, J., & Petsch, E. J. (1997). Update on emeralds from the Sandawana Mines, Zimbabwe. Gems & Gemology,33, 80–100.

    Google Scholar 

Download references

Acknowledgements

We thank the Zimbabwe Geological Survey for providing logistical support throughout the various gravity data collection exercises, some carried out under the auspices of the University of Zimbabwe. Mr O. Okatswa (OT) is thanked for the geology graphics. The paper benefited greatly from a critical review of the draft manuscript by Tom Blenkinsop. Constructive comments by the reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubeni T. Ranganai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganai, R.T., Gwavava, O., Ebinger, C.J. et al. Configuration of Late Archaean Chilimanzi and Razi Suites of Granites, South-Central Zimbabwe Craton, From Gravity Modelling: Geotectonic Implications. Pure Appl. Geophys. 177, 1043–1069 (2020). https://doi.org/10.1007/s00024-019-02302-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02302-4

Keywords

Navigation