Skip to main content
Log in

Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present simulations of dynamic ruptures in a continuum damage–breakage rheological model and waves radiated by the ruptures and observed in the far field. The propagating rupture produces rock damage and granulation in the process zone ahead of the rupture front. An expansion–compaction process in the process zone leads to an isotropic source term, while shear motion that accumulates behind the propagating front produces a deviatoric source term and shear heating behind the rupture front. The process zone dissipation due to the damage–breakage mechanism, and the isotropic source component, significantly affect the S/P energy partitioning and the radiation patterns of the waves. The calculated S/P seismic energy ratio can be significantly lower than results of standard models with no damage–breakage mechanism and no source volume components. The P radiation pattern becomes more isotropic compared with the classical deviatoric solution, with increased lobes at 45° to the direction of rupture propagation. The S radiation pattern is affected more strongly by the damage–breakage process in the source volume, mainly within the process zone, and is significantly different from classical deviatoric results. The S waves propagate from the rupture front through the process zone (unlike the P waves), experiencing stronger dissipation, so the S radiation pattern is more affected than the P radiation pattern. Hence, analysis of P waves can provide more reliable results on rupture directivity than S waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abercrombie, R. E. (1995). Earthquake source scaling relationships from − 1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research, 100, 24015–24036.

    Article  Google Scholar 

  • Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 30, 1217–1231.

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology: theory and methods. New York: W. H. Freeman & Co.

    Google Scholar 

  • Alava, M. J., Nukala, P., & Zapperi, S. (2006). Statistical models of fracture. Advances in Physics, 55, 349–476. (10.1080).

    Article  Google Scholar 

  • Allix, O., & Hild, F. (2002). Continuum damage mechanics of materials and structures (p. 396). Amsterdam: Elsevier.

    Google Scholar 

  • Ancey, C., Coussot, P., & Evesque, P. A. (1999). A theoretical framework for very concentrated granular suspensions in steady simple shear flow. Journal of Rheology, 43, 1673–1699.

    Article  Google Scholar 

  • Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102, 553–571.

    Article  Google Scholar 

  • Ashby, M. F., & Sammis, C. G. (1990). The damage mechanics of brittle solids in compression. Pure and Applied Geophysics, 133(3), 489–521.

    Article  Google Scholar 

  • Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society London, 225, 49–63.

    Google Scholar 

  • Barenblatt, G. I. (1996). Scaling, self-similarity and intermediate asymptotics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ben-Menahem, A., & Singh, S. J. (1981). Seismic waves and sources. New York: Springer.

    Book  Google Scholar 

  • Ben-Zion, Y., & Ampuero, J.-P. (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal International, 178, 1351–1356. https://doi.org/10.1111/j.1365-246X.2009.04285.x.

    Article  Google Scholar 

  • Ben-Zion, Y., Dahmen, K., Lyakhovsky, V., Ertas, D., & Agnon, A. (1999). Self-driven mode switching of earthquake activity on a fault system. Earth and Planetary Science Letters, 172, 11–21.

    Article  Google Scholar 

  • Bhat, H. S., Rosakis, A. J., & Sammis, C. G. (2012). A micromechanics based constitutive model for brittle failure at high strain rates. Journal of Applied Mechanics, 79(3), 031016. https://doi.org/10.1115/1.4005897.

    Article  Google Scholar 

  • Boneh, Y., Chang, J.C., Lockner, D. A., Reches, Z. (2014). Evolution of wear and friction along experimental faults. Pure and Applied Geophysics, 171(11):3125–3141.

    Article  Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Article  Google Scholar 

  • Calderoni, G., Rovelli, A., Ben-Zion, Y., & DiGiovambattista, R. (2015). Along-strike rupture directivity of earthquakes of the 2009 L’Aquila, central Italy, seismic sequence. Geophysical Journal International, 203, 399–415. https://doi.org/10.1093/gji/ggv275.

    Article  Google Scholar 

  • Causse, M., Dalguer, L. A., & Mai, P. M. (2014). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196, 1754–1769. https://doi.org/10.1093/gji/ggt478.

    Article  Google Scholar 

  • Chaikin, P. M., & Lubensky, T. C. (2000). Principles of condensed matter physics (p. 720). Cambridge: Cambridge University Press.

    Google Scholar 

  • Charles, R. J. (1958). Static fatigue of glass. Journal of Applied Physics, 29, 1549–1560.

    Article  Google Scholar 

  • Chester, J. S., Chester, F. M., & Kronenberg, A. K. (2005). Fracture surface energy of the Punchbowl Fault, San Andreas system. Nature, 437, 133–135.

    Article  Google Scholar 

  • Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98, 771–786.

    Article  Google Scholar 

  • Collins, J. A. (1993). Failure of materials in mechanical design. New York: Wiley.

    Google Scholar 

  • Cundall, P. A. (1989). Numerical experiments on localization in frictional materials. Ingenieur-Archiv, 59, 148–159.

    Article  Google Scholar 

  • Douglas, A., Hudson, J. A., & Pearce, R. G. (1988). Directivity and the Doppler effect. Bulletin of the Seismological Society of America, 78(3), 1367–1372.

    Google Scholar 

  • Dunn, J. E., & Serrin, J. (1985). On the thermodynamics of interstitial working. Archive for Rational Mechanics and Analysis, 88, 95–133.

    Article  Google Scholar 

  • Einav, I. (2007a). Breakage mechanics—Part I: Theory. Journal of the Mechanics and Physics of Solids, 55, 1274–1297.

    Article  Google Scholar 

  • Einav, I. (2007b). Breakage mechanics—Part II: Modeling granular materials. Journal of the Mechanics and Physics of Solids, 55, 1298–1320.

    Article  Google Scholar 

  • Forterre, Y., & Pouliquen, O. (2008). Flows of dense granular media. Annual Review of Fluid Mechanics, 40, 1–24.

    Article  Google Scholar 

  • Giovine, P. (1999). Nonclassical thermomechanics of granular materials. Mathematical Physics, Analysis and Geometry, 2, 179–196.

    Article  Google Scholar 

  • Grady, D. E., & Kipp, M. E. (1980). Continuum modeling of explosive fracture in oil shale. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17, 147–157.

    Article  Google Scholar 

  • Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society London, 221, 582–593.

    Google Scholar 

  • Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., & Lockner, D. (2004). A visco-elastic damage model with applications to stable and unstable fracturing. Geophysical Journal International, 159, 1–11.

    Article  Google Scholar 

  • Hansen, N. R., & Schreyer, H. L. (1994). A thermodynamically consistent framework for theories of elasticity coupled with damage. International Journal of Solids and Structures, 31, 359–389.

    Article  Google Scholar 

  • Haskell, N. A. (1964). Total energy and energy density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.

    Google Scholar 

  • Henann, D. L., & Kamrin, K. (2013). A predictive, size-dependent continuum model for dense granular flows. Proceedings of the National Academy of Sciences of the United States of America, 110, 6730–6735.

    Article  Google Scholar 

  • Henann, D. L., & Kamrin, K. (2014). Continuum thermomechanics of the nonlocal granular rheology. International Journal of Plasticity, 60, 145–162.

    Article  Google Scholar 

  • Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441, 727–730. https://doi.org/10.1038/nature04801.

    Article  Google Scholar 

  • Kachanov, L. M. (1958). On the time to rupture under creep conditions. Izvestiya Akademii Nauk SSSR, OTN 8, 26–31. (in Russian).

    Google Scholar 

  • Kachanov, L. M. (1986). Introduction to continuum damage mechanics (p. 135). Leiden: Martinus Nijhoff.

    Book  Google Scholar 

  • Kane, D. L., Shearer, P. M., Goertz-Allmann, B. P., & Vernon, F. L. (2013). Rupture directivity of small earthquakes at Parkfield. Journal of Geophysical Research, 118, 212–221. https://doi.org/10.1029/2012JB009675.

    Google Scholar 

  • Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research. https://doi.org/10.1002/2014jb011642.

    Google Scholar 

  • Knopoff, L. (1964). Q. Reviews of Geophysics, 2(4), 625–660.

    Article  Google Scholar 

  • Knopoff, L., & MacDonald, G. J. F. (1960). Models for acoustic loss in solids. Journal of Geophysical Research, 65, 2191–2197.

    Article  Google Scholar 

  • Krajcinovic, D. (1996). Damage mechanics. Amsterdam: Elsevier.

    Google Scholar 

  • Kurzon, I., Vernon, F. L., Rosenberger, A., & Ben-Zion, Y. (2014). Real-time automatic detectors of P and S waves using singular value decomposition. Bulletin of the Seismological Society of America, 104, 1696–1708.

    Article  Google Scholar 

  • Kwiatek, G., & Ben-Zion, Y. (2013). Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South Africa mine. Journal of Geophysical Research, 118, 3630–3641. https://doi.org/10.1002/jgrb.50274.

    Google Scholar 

  • Lengliné, O., & Got, J.-L. (2011). Rupture directivity of micro-earthquake sequences near Parkfield, California. Geophysical Research Letters, 38, L08310. https://doi.org/10.1029/2011GL047303.

    Article  Google Scholar 

  • Lu, Y. B., Li, Q. M., & Ma, G. W. (2010). Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. International Journal of Rock Mechanics and Mining Sciences, 47, 829–838.

    Article  Google Scholar 

  • Lyakhovsky, V., & Ben-Zion, Y. (2014a). A continuum damage–breakage faulting model and solid-granular transitions. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-014-0845-4.

    Google Scholar 

  • Lyakhovsky, V., & Ben-Zion, Y. (2014b). Damage–breakage rheology model and solid-granular transition near brittle instability. Journal of the Mechanics and Physics of Solids, 64, 184–197.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., & Agnon, A. (1997). Distributed damage, faulting, and friction. Journal of Geophysical Research, 102, 27635–27649.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., Ilchev, A., & Mendecki, A. (2016). Dynamic rupture in a damage–breakage rheology model. Geophysical Journal International, 206, 1126–1143. https://doi.org/10.1093/gji/ggw183.

    Article  Google Scholar 

  • Lyakhovsky, V., Hamiel, Y., & Ben-Zion, Y. (2011). A non-local visco-elastic damage model and dynamic fracturing. Journal of the Mechanics and Physics of Solids, 59, 1752–1776. https://doi.org/10.1016/j.jmps.2011.05.016.

    Article  Google Scholar 

  • Lyakhovsky, V., Ilchev, A., & Agnon, A. (2001). Modeling of damage and instabilities of rock mass by means of a non-linear rheological model. In G. van Aswegen, R. J. Durrheim, & W. D. Ortlepp (Eds.), Rockbursts and seismicity in mines: dynamic rock mass response to mining (pp. 413–420). Johannesburg: RaSiM-5, South African Institute of Mining and Metallurgy.

    Google Scholar 

  • Lyakhovsky, V., Podladchikov, Y., & Poliakov, A. (1993). Rheological model of a fractured solid. Tectonophysics, 226, 187–198.

    Article  Google Scholar 

  • Lyakhovsky, V., Zhu, W., & Shalev, E. (2015). Visco-poroelastic damage model for brittle-ductile failure of porous rocks. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2014jb011805.

    Google Scholar 

  • Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66, 639–666.

    Google Scholar 

  • Main, I. G., Meredith, P. G., & Sammonds, P. R. (1992). Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophysics, 211, 233–246.

    Article  Google Scholar 

  • Main, I. G., Meredith, P. G., & Sammonds, P. R. (1993). Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophysical Journal International, 115, 367–380.

    Article  Google Scholar 

  • Meredith, P. G., & Atkinson, B. K. (1985). Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro. Tectonophysics, 39, 33–51.

    Google Scholar 

  • Molnar, P., Tucker, B. E., & Brune, J. N. (1973). Corner frequencies of P and S waves and models of earthquake sources. Bulletin of the Seismological Society of America, 63, 2091–2104.

    Google Scholar 

  • Oth, A. (2013). On the characteristics of earthquake stress release variations in Japan. Earth and Planetary Science Letters, 377, 132–141.

    Article  Google Scholar 

  • Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–534.

    Article  Google Scholar 

  • Peyrat, S., Olsen, K. B., & Madariaga, R. (2001). Dynamic modelling of the 1992 Landers earthquake. Journal of Geophysical Research, 106(B11), 26467–26482. https://doi.org/10.1029/2001JB000205.

    Article  Google Scholar 

  • Poliakov, A., Cundall, P., Podladchikov, Y., & Lyakhovsky, V. (1993). An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-layers model. In K. E. Runcorn & D. Stone (Eds.), Dynamic modeling and flow in the earth and planets, proceedings of the NATO advanced study institute (p. 175). Dordrecht: Kluwer.

    Google Scholar 

  • Prieto, G., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self–similarity estimation from stacking P and S spectra. Journal of Geophysical Research, 109, B08310. https://doi.org/10.1029/2004JB003084.

    Article  Google Scholar 

  • Rabotnov, Y.N. (1959). A mechanism of a long time failure. In Y.N. Rabotnov (Ed.), Creep problems in structural members. USSR Acad. of Sci. Publ. (pp. 5–7), Amsterdam: North-Holland.

    Google Scholar 

  • Rabotnov, Y. N. (1988). Mechanics of deformable solids (p. 712). Moscow: Science.

    Google Scholar 

  • Rosenberger, A. (2010). Real-time ground motion analysis: Distinguishing P and S arrivals in a noisy environment. Bulletin of the Seismological Society of America, 100, 1252–1262.

    Article  Google Scholar 

  • Ross, Z. E., & Ben-Zion, Y. (2016). Towards reliable automated estimates of earthquake source properties from body wave spectra. Journal of Geophysical Research, 121, 4390–4407. https://doi.org/10.1002/2016JB013003.

    Google Scholar 

  • Sammis, C. G., Rosakis, A. J., & Bhat, H. S. (2009). Effects of off-fault damage on earthquake rupture propagation: experimental studies. Pure and Applied Geophysics, 166, 1629–1648. https://doi.org/10.1007/s00024-009-0512-3.

    Article  Google Scholar 

  • Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. Journal of Physics of the Earth, 21, 415–432.

    Article  Google Scholar 

  • Savage, J. C. (1972). Relation of corner frequency to fault dimensions. Journal of Geophysical Research, 77, 3788–3795.

    Article  Google Scholar 

  • Savage, S. B. (1984). The mechanics of rapid granular flows. Advances in Applied Mechanics, 24, 289–366.

    Article  Google Scholar 

  • Savage, S. B. (1998). Analyses of slow high-concentration flows of granular materials. Journal of Fluid Mechanics, 377, 1–26.

    Article  Google Scholar 

  • Shearer, P. M. (2009). Introduction to seismology (p. 396). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shi, Z., & Ben-Zion, Y. (2009). Seismic radiation from tensile and shear point dislocations between similar and dissimilar solids. Geophysical Journal International, 179, 444–458. https://doi.org/10.1111/j.1365-246X.2009.04299.x.

    Article  Google Scholar 

  • Shlomai, H., & Fineberg, J. (2016). The structure of slip-pulses and supershear ruptures driving slip in bi-material friction. Nature Communications, 7, 11787. https://doi.org/10.1038/ncomms11787.

    Article  Google Scholar 

  • Suzuki, T. (2013). Damage-tensor-based nondimensional parameters governing secondary faulting behavior. Tectonophysics, 600, 205–216.

    Article  Google Scholar 

  • Thomas, M. Y., & Bhat, H. S. (2018). Dynamic evolution of off-fault medium during an earthquake: A micromechanics based model. Geophysical Journal International, 214, 1267–1280.

    Article  Google Scholar 

  • Trugman, D. T., & Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in southern California. Journal of Geophysical Research. https://doi.org/10.1002/2017jb013971.

    Google Scholar 

  • Turcotte, D. L., Newman, W. I., & Shcherbakov, R. (2003). Micro and macroscopic models of rock fracture. Geophysical Journal International, 152, 718–728.

    Article  Google Scholar 

  • Valanis, K. C. (1990). A theory of damage in brittle materials. Engineering Fracture Mechanics, 36, 403–416.

    Article  Google Scholar 

  • Vavryčuk, V. (2001). Inversion for parameters of tensile earthquakes. Journal of Geophysical Research, 106(B8), 16339–16355. https://doi.org/10.1029/2001JB000372.

    Article  Google Scholar 

  • Veveakis, E., & Regenauer-Lieb, K. (2014). The fluid dynamics of solid mechanical shear zones. Pure and Applied Geophysics, 171, 3159–3174.

    Article  Google Scholar 

  • Wang, Z., Ning, J., & Ren, H. (2018). Frequency characteristics of the released stress wave by propagating cracks in brittle materials. Theoretical and Applied Fracture Mechanics. https://doi.org/10.1016/j.tafmec.2018.04.004.

    Google Scholar 

  • Weertman, J. (1980). Unstable slippage across a fault that separates elastic media of different elastic constants. Journal of Geophysical Research, 85, 1455–1461.

    Article  Google Scholar 

  • Xu, S., Ben-Zion, Y., Ampuero, J.-P., & Lyakhovsky, V. (2015). Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-014-0923-7.

    Google Scholar 

  • Yang, W., Peng, Z., & Ben-Zion, Y. (2009). Variations of strain-drops of aftershocks of the 1999 İzmit and Düzce earthquakes around the Karadere-Düzce branch of the North Anatolian Fault. Geophysical Journal International, 177, 235–246. https://doi.org/10.1111/j.1365-246X.2009.04108.x.

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Ilchev and O. Salomon for help with the simulations and acknowledge support by the US–Israel Bi-national Science Foundation (BSF Grant 2016043). The paper benefited from useful comments of two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lyakhovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzon, I., Lyakhovsky, V. & Ben-Zion, Y. Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model. Pure Appl. Geophys. 176, 1003–1020 (2019). https://doi.org/10.1007/s00024-018-2060-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2060-1

Keywords

Navigation