Skip to main content
Log in

Green’s Functions for Post-seismic Strain Changes in a Realistic Earth Model and Their Application to the Tohoku-Oki Mw 9.0 Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Based on a spherically symmetric, self-gravitating viscoelastic Earth model, we derive a complete set of Green’s functions for the post-seismic surface strain changes for four independent dislocation sources: strike-slip, dip-slip, and horizontal and vertical tensile point sources. The post-seismic surface strain changes caused by an arbitrary earthquake can be obtained by a combination of the above Green’s functions. The post-seismic surface strain changes in the near field agree well with the results calculated by the method in a half-space Earth model (Wang et al. in Comupt Geosci 32:527–541, 2006), which verifies our Green’s functions. With an increase in the epicentral distance, the effect of the curvature on both the co- and post-seismic strain changes clearly increases, revealing the importance of our spherical theory for far-field calculations. Next, we use our Green’s functions to simulate the post-seismic surface strain changes that were caused by the viscoelastic relaxation of the mantle over the 6-year period after the Tohoku-Oki Mw 9.0 earthquake. Based on continuous Global Positioning System (GPS) observations around Honshu Island of Japan, Northeastern China, South Korea and the Russian Far East, we also deduce the post-seismic strain changes caused by the Tohoku-Oki Mw 9.0 earthquake. Overall, the distributions of the calculated and GPS-derived strain changes agree well each other. Finally, we compare the relative error between the observed and simulated strain changes over the 3.0–4.5-year period after the earthquake in both the near and far field. We find that the relative errors decrease as the epicentral distance increases, which validates our Green’s functions for research in the far field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Araya, A., Takamori, A., Morii, W., Hayakawa, H., Uchiyama, T., & Ohashi, M. (2010). Analyses of far-field coseismic crustal deformation observed by a new laser distance measurement system. Geophysical Journal International, 181, 127–140.

    Article  Google Scholar 

  • Araya, A., Takamori, A., Morii, W., Miyo, K., Ohashi, M., & Hayama, K. (2017). Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka, Japan. Earth Planets Space, 69, 77.

    Article  Google Scholar 

  • Chinnery, M. A. (1961). The deformation of ground around surface faults. Bulletin of the Seismological Society of America, 51, 355–372.

    Google Scholar 

  • Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting. Bulletin of the Seismological Society of America, 53, 921–932.

    Google Scholar 

  • Diao, F., Xiong, X., Wang, R., Zheng, Y., Walter, T. R., Weng, H., et al. (2014). Overlapping post-seismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 M w 9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196, 218–229.

    Article  Google Scholar 

  • Dong, J., Sun, W., Zhou, X., & Wang, R. (2014). Effects of earth’s layered structure, gravity and curvature on coseismic deformation. Geophysical Journal International, 199, 1442–1451.

    Article  Google Scholar 

  • Dong, J., Sun, W., Zhou, X., & Wang, R. (2016). An analytical approach to estimate curvature effect of coseismic deformations. Geophysical Journal International, 206, 1327–1339.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, A. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • Fang, M., & Hager, B. H. (1994). A singularity free approach to post glacial rebound calculations. Geophysical Research Letters, 21, 2131–2134.

    Article  Google Scholar 

  • Freed, A. M., Hashima, A., Becker, T. W., Okaya, D. A., Sato, H., & Hatanaka, Y. (2017). Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth and Planetary Science Letters, 459, 279–290.

    Article  Google Scholar 

  • Fu, G., & Sun, W. (2004). Effects of spatial distribution of fault slip on calculating co-seismic displacement: case studies of the Chi-Chi earthquake (M w 7.6) and the Kunlun earthquake (M w 7.8). Geophysical Research Letters, 31, 177–178.

    Article  Google Scholar 

  • Fukahata, Y., & Matsu’ura, M. (2005). General expressions for internal deformation fields due to a dislocation source in a multilayered elastic halfspace. Geophysical Journal International, 161, 507–521.

    Article  Google Scholar 

  • Fukahata, Y., & Matsu’ura, M. (2006). Quasi-static internal deformation due to a dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem. Geophysical Journal International, 166, 418–434.

    Article  Google Scholar 

  • Gao, S., Fu, G., Liu, T., & Zhang, G. (2017). A new code for calculating post-seismic displacements as well as geoid and gravity changes on a layered visco-elastic spherical earth. Pure and Applied Geophysics, 174, 1167–1180.

    Article  Google Scholar 

  • Hashima, A., Fukahata, Y., Hashimoto, C., & Matsu’ura, M. (2014). Quasi-static strain and stress fields due to a moment tensor in elastic–viscoelastic layered half-space. Pure and Applied Geophysics, 171, 1669–1693.

    Article  Google Scholar 

  • Hashima, A., Takada, Y., Fukahata, Y., & Matsu’ura, M. (2008). General expressions for internal deformation due to a moment tensor in an elastic/viscoelastic multilayered half-space. Geophysical Journal International, 175, 992–1012.

    Article  Google Scholar 

  • Lee, E. H. (1955). Stress analysis in visco-elastic bodies. Quarterly of Applied Mathematics, 13, 183–190.

    Article  Google Scholar 

  • Liu, T., Fu, G., Zhou, X., & Su, X. (2017). Mechanism of post-seismic deformations following the 2011 Tohoku-Oki M w 9.0 earthquake and general structure of lithosphere around the sources. Chinese Journal of Geophysics, 60, 3406–3417. (in Chinese).

    Google Scholar 

  • Maruyama, T. (1964). Statical elastic dislocations in an infinite and semi-infinite medium. Bulletin of the Earthquake Research Institute, University of Tokyo, 42, 289–368.

    Google Scholar 

  • Noda, A., Takahama, T., Kawasato, T., & Matsu’ura, M. (2018). Interpretation of offshore crustal movements following the 2011 Tohoku-oki earthquake by the combined effect of afterslip and viscoelastic stress relaxation. Pure and Applied Geophysics, 175, 559–572.

    Article  Google Scholar 

  • Ohzono, M., Yabe, Y., Iinuma, T., Yusaku, O., Miura, S., & Tachibana, K. (2012). Strain anomalies induced by the 2011 Tohoku Earthquake (M w, 9.0) as observed by a dense GPS network in northeastern Japan. Earth Planets Space, 64, 1231–1238.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Okubo, S. (1991). Potential and gravity changes raised by point dislocations. Geophysical Journal International, 105, 573–586.

    Article  Google Scholar 

  • Okubo, S. (1992). Potential and gravity changes due to shear and tensile faults in a half-space. Journal of Geophysical Research, 97, 7137–7144.

    Article  Google Scholar 

  • Okubo, S. (1993). Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric earth. Geophysical Journal International, 115, 921–928.

    Article  Google Scholar 

  • Ozawa, S., Nishimura, T., Munekata, H., Suito, H., Kobayashi, T., Tobita, M., et al. (2012). Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. Journal of Geophysical Research, 117, B07404. https://doi.org/10.1029/2011JB009120.

    Article  Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-oki earthquake. Nature, 475, 373–376.

    Article  Google Scholar 

  • Peltier, W. R. (1974). The impulse response of a Maxwell Earth. Reviews of Geophysics, 12, 649–669.

    Article  Google Scholar 

  • Piersanti, A., Spada, G., Sabadini, R., & Bonafede, M. (1995). Global postseismic deformation. Geophysical Journal International, 120, 544–566.

    Article  Google Scholar 

  • Pollitz, F. F. (1997). Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. Journal of Geophysical Research, 102, 17921–17941.

    Article  Google Scholar 

  • Radok, J. R. M. (1957). Visco-elastic stress analysis. Quarterly of Applied Mathematics, 15, 198–202.

    Article  Google Scholar 

  • Saito, M. (1967). Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous earth. Journal of Geophysical Research, 72, 3689–3699.

    Article  Google Scholar 

  • Savage, J. C., Gan, W., & Svarc, J. L. (2001). Strain accumulation and rotation in the Eastern California Shear Zone. Journal of Geophysical Research, 106, 21995–22007.

    Article  Google Scholar 

  • Savage, J. C., Prescott, W. H., & Gu, G. (1986). Strain accumulation in southern California, 1973–1984. Journal of Geophysical Research, 91, 7455–7473.

    Article  Google Scholar 

  • Steketee, J. A. (1958). On Volterra’s dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36, 192–205.

    Article  Google Scholar 

  • Sun, W., & Okubo, S. (1998). Surface potential and gravity changes due to internal dislocations in a spherical earth -II. Application to a finite fault. Geophysical Journal International, 132, 79–88.

    Article  Google Scholar 

  • Sun, W., & Okubo, S. (2002). Effects of earth’s spherical curvature and radial heterogeneity in dislocation studies—for a point dislocation. Geophysical Research Letters, 29, 46–1–46-4.

    Google Scholar 

  • Sun, W., Okubo, S., & Fu, G. (2006). Green’s functions of co-seismic strain changes and investigation of effect of earth’s spherical curvature and radial heterogeneity. Geophysical Journal International, 167, 1273–1291.

    Article  Google Scholar 

  • Sun, W., Okubo, S., Fu, G., & Araya, A. (2009). General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model—applicable to deformed earth surface and space-fixed point. Geophysical Journal International, 177, 817–833.

    Article  Google Scholar 

  • Sun, W., Okubo, S., & Vaníček, P. (1996). Global displacements caused by point dislocations in a realistic Earth model. Journal of Geophysical Research, 101, 8561–8578.

    Article  Google Scholar 

  • Sun, T., Wang, K., Iinuma, T., Hino, R., He, J., Fujimoto, H., et al. (2014). Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature, 514(7520), 84–87.

    Article  Google Scholar 

  • Takagi, Y., & Okubo, S. (2017). Internal deformation caused by a point dislocation in a uniform elastic sphere. Geophysical Journal International, 208, 973–991.

    Article  Google Scholar 

  • Takahashi, H. (2011). Static strain and stress changes in eastern Japan due to the 2011 off the Pacific coast of Tohoku Earthquake, as derived from GPS data. Earth Planets Space, 63, 741–744.

    Article  Google Scholar 

  • Takeuchi, H., & Saito, M. (1972). Seismic surface waves. Methods in Computational Physics Advances in Research & Applications, 11, 217–295.

    Google Scholar 

  • Tanaka, T., Okuno, J., & Okubo, S. (2006). A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation. Geophysical Journal International, 164, 273–289.

    Article  Google Scholar 

  • Tanaka, T., Okuno, J., & Okubo, S. (2007). A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (II)—Horizontal displacement. Geophysical Journal International, 170, 1031–1052.

    Article  Google Scholar 

  • Tang, H., & Sun, W. (2017). Asymptotic expressions for changes in the surface co-seismic strain on a homogeneous sphere. Geophysical Journal International, 209, 202–225.

    Google Scholar 

  • Tape, C., Musé, P., Simons, M., Dong, D., & Webb, F. (2009). Multiscale estimation of GPS velocity fields. Geophysical Journal International, 179, 945–971.

    Article  Google Scholar 

  • Vermeersen, L. L. A., & Sabadini, R. (1997). A new class of stratified viscoelastic models by analytical techniques. Geophysical Journal International, 129, 531–570.

    Article  Google Scholar 

  • Wang, H. (1999). Surface vertical displacements, potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations. Geophysical Journal International, 137, 429–440.

    Article  Google Scholar 

  • Wang, R., Lorenzo-Martin, F., & Roth, F. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Computer & Geosciences, 29, 195–207.

    Article  Google Scholar 

  • Wang, R., Lorenzo-Martin, F., & Roth, F. (2006). PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computer & Geosciences, 32, 527–541.

    Article  Google Scholar 

  • Wei, S., Graves, R., Helmberger, D., Avouac, J. P., & Jiang, J. (2012). Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles. Earth and Planetary Science Letters, 333–334, 91–100.

    Article  Google Scholar 

  • Yamagiwa, S., Miyazaki, S., Hirahara, K., & Fukahata, Y. (2015). Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (M w 9.0) inferred from inland GPS and seafloor GPS/acoustic data. Geophysical Research Letters, 42, 66–73.

    Article  Google Scholar 

  • Zhao, Q., Fu, G., Wu, W., Liu, T., Su, L., Su, X., et al. (2018). Spatial-temporal evolution and corresponding mechanism of the far-field post-seismic displacements following the 2011 M w 9. 0 Tohoku earthquake. Geophysical Journal International, 214, 1774–1782.

    Article  Google Scholar 

  • Zhou, X., Cambiotti, G., Sun, W., & Sabadini, R. (2014). The coseismic slip distribution of a shallow subduction fault constrained by prior information: the example of 2011 Tohoku (M w 9.0) megathrust earthquake. Geophysical Journal International, 199, 981–995.

    Article  Google Scholar 

  • Zhou, X., Sun, W., Zhao, B., Fu, G., Dong, J. & Nie, Z. (2012). Geodetic observations detecting coseismic displacements and gravity changes caused by the M w = 9.0 Tohoku-Oki earthquake. Journal of Geophysical Research, 117, https://doi.org/10.1029/2011jb008849.

Download references

Acknowledgements

We thank two anonymous reviewers for their helpful comments and suggestions. We thank Dr. Yoshiyuki Tanaka at Earthquake Research Institute, the University of Tokyo for providing us with his computer codes, which helped us to establish the Green’s functions for post-seismic strain changes. The Green’s functions are available in Table 1. This work was financially supported by the National Science Foundation of China (41574071; 41874003; 41331066) and the Basic Research Projects of Institute of Earthquake Science, China Earthquake Administration (2016IES010204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Explicit Expressions for the Homogeneous Terms

According to Takeuchi and Saito (1972), one can obtain the numerical solution of Eqs. (6) and (7) when excluding excitation terms.

The explicit expressions for the homogeneous terms are specifically written as

$$\frac{{{\text{d}}\tilde{y}_{1} }}{{{\text{d}}r}} = \frac{1}{\lambda + 2\mu }\left( {\tilde{y}_{2} - \frac{\lambda }{r}\left[ {2\tilde{y}_{1} - n(n + 1)\tilde{y}_{3} } \right]} \right),$$
(53)
$$\begin{aligned} \frac{{{\text{d}}\tilde{y}_{2} }}{{{\text{d}}r}} = & - s^{2} \rho \tilde{y}_{1} + \frac{2}{r}\left( {\lambda \frac{{d\tilde{y}_{1} }}{\text{d}r} - \tilde{y}_{2} } \right) \\ {\kern 1pt} & \quad + \frac{1}{r}\left( {\frac{{2\left( {\lambda - \mu } \right)}}{r} - \rho g} \right)\left[ {2\tilde{y}_{1} - n(n + 1)\tilde{y}_{3} } \right] \\ {\kern 1pt} & \quad + \frac{n(n + 1)}{r}\tilde{y}_{4} - \rho \left( {\tilde{y}_{6} - \frac{n + 1}{r}\tilde{y}_{5} + \frac{2g}{r}\tilde{y}_{1} } \right), \\ \end{aligned}$$
(54)
$$\frac{{{\text{d}}\tilde{y}_{3} }}{{{\text{d}}r}} = \frac{1}{\mu }\tilde{y}_{4} + \frac{1}{r}\left( {\tilde{y}_{3} - \tilde{y}_{1} } \right),$$
(55)
$$\begin{aligned} \frac{{{\text{d}}\tilde{y}_{4} }}{{{\text{d}}r}} = & - s^{2} \rho \tilde{y}_{3} - \frac{\lambda }{r}\frac{{{\text{d}}\tilde{y}_{1} }}{{{\text{d}}r}} - \frac{\lambda + 2\mu }{{r_{2} }}\left[ {2\tilde{y}_{1} - n\left( {n + 1} \right)\tilde{y}_{3} } \right] \\ {\kern 1pt} & \quad + \frac{2\mu }{{r_{2} }}\left( {\tilde{y}_{1} - \tilde{y}_{3} } \right) - \frac{3}{r}\tilde{y}_{4} - \frac{\rho }{r}\left( {\tilde{y}_{5} - g\tilde{y}_{1} } \right), \\ \end{aligned}$$
(56)
$$\frac{{{\text{d}}\tilde{y}_{5} }}{{{\text{d}}r}} = \tilde{y}_{6} + 4\pi G\rho \tilde{y}_{1} - \frac{n + 1}{r}\tilde{y}_{5},$$
(57)
$$\frac{{{\text{d}}\tilde{y}_{6} }}{{{\text{d}}r}} = \frac{n - 1}{r}\left( {\tilde{y}_{6} + 4\pi G\rho \tilde{y}_{1} } \right) + \frac{4\pi G\rho }{r}\left[ {2\tilde{y}_{1} - n\left( {n + 1} \right)\tilde{y}_{3} } \right],$$
(58)
$$\frac{{{\text{d}}\tilde{y}_{1}^{\text{T}} }}{{{\text{d}}r}} = \frac{1}{r}\tilde{y}_{1}^{\text{T}} + \frac{1}{\mu }\tilde{y}_{2}^{\text{T}},$$
(59)
$$\frac{{{\text{d}}\tilde{y}_{2}^{\text{T}} }}{{{\text{d}}r}} = \left[ {\frac{{\left( {n - 1} \right)\left( {n + 2} \right)\mu }}{{r^{2} }} + s^{2} \rho } \right]\tilde{y}_{1}^{\text{T}} - \frac{3}{r}\tilde{y}_{2}^{\text{T}},$$
(60)

where \(\lambda (s) = \frac{{\lambda s + {{\mu K} \mathord{\left/ {\vphantom {{\mu K} \eta }} \right. \kern-0pt} \eta }}}{{s + {\mu \mathord{\left/ {\vphantom {\mu \eta }} \right. \kern-0pt} \eta }}},\; \mu (s) = \frac{\mu s}{{s + {\mu \mathord{\left/ {\vphantom {\mu \eta }} \right. \kern-0pt} \eta }}},\; K = \lambda + \frac{2}{3}\mu\), based on the Laplace transform of Maxwell’s constitutive equation (Peltier 1974); and \(g = \left| {\varvec{g}(\varvec{r})} \right|\) denotes the magnitude of the gravity (Takeuchi and Saito 1972).

1.2 Appendix 2: The Solution of the Differential Equation

According to Tanaka et al. (2006, 2007), the expressions for \(F_{v}^{i}\) (i = 1,…,4), \(F_{u}^{i}\) (i = 1,…,4) and \(F_{t}^{i}\) (i = 1, 2) can be expressed as follows:

$$\begin{aligned} F_{u}^{1} \left( {t;n} \right) = - & \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {\left[ {\frac{{3\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}{{\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}\frac{1}{{r_{s} }}X^{{\text{Press}}} \left( {r_{s} ,s;n} \right)} \right.} \\ \quad & \left. { + \frac{{\lambda (r_{s} ,s)}}{{\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}x_{2}^{{\text{Press}}} \left( {r_{s} ,s;n} \right)} \right]\frac{{{\text{e}}^{st} }}{s}{\text{d}}s, \\ \end{aligned}$$
(61)
$$F_{u}^{2} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{2}^{{\text{Press}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(62)
$$F_{u}^{3} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{3}^{{\text{Press}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(63)
$$F_{u}^{4} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{4}^{{\text{Press}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(64)
$$\begin{aligned} F_{v}^{1} \left( {t;n} \right) &= - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {\left[ {\frac{{3\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}{{\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}\frac{1}{{r_{s} }}X^{{\text{Shear}}} \left( {r_{s} ,s;n} \right)} \right.} \\ & \quad \left. { +\, \frac{{\lambda (r_{s} ,s)}}{{\lambda (r_{s} ,s) + 2\mu (r_{s} ,s)}}x_{2}^{{\text{Shear}}} \left( {r_{s} ,s;n} \right)} \right]\frac{{{\text{e}}^{st} }}{s}{\text{d}}s, \\ \end{aligned}$$
(65)
$$F_{v}^{2} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{2}^{{\text{Shear}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(66)
$$F_{v}^{3} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{3}^{{\text{Shear}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(67)
$$F_{v}^{4} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{4}^{{\text{Shear}}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(68)
$$F_{t}^{1} \left( {t;n} \right) = \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{1}^{\text{T}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s,$$
(69)
$$F_{t}^{2} \left( {t;n} \right) = - \frac{1}{2\pi i}\frac{G}{{g_{0} a}}\oint {x_{2}^{\text{T}} \left( {r_{s} ,s;n} \right)} \frac{{{\text{e}}^{st} }}{s}{\text{d}}s.$$
(70)

In the above equations, the relationship between X, x1 and x3 can be found in Okubo (1993) as

$$X^{{\text{Press}}} = 2x_{1}^{{\text{Press}}} - n(n + 1)x_{3}^{{\text{Press}}},$$
(71)
$$X^{{\text{Shear}}} = 2x_{1}^{{\text{Shear}}} - n(n + 1)x_{3}^{{\text{Shear}}}.$$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Fu, G., She, Y. et al. Green’s Functions for Post-seismic Strain Changes in a Realistic Earth Model and Their Application to the Tohoku-Oki Mw 9.0 Earthquake. Pure Appl. Geophys. 176, 3929–3949 (2019). https://doi.org/10.1007/s00024-018-2054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2054-z

Keywords

Navigation