Skip to main content
Log in

Subsurface Investigation of the Neogene Mygdonian Basin, Greece Using Magnetic Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A high-resolution ground and marine magnetic survey was executed to determine the structure of the subsurface and the thickness of the sedimentary cover in the Mygdonian Basin. A spacing of approximately 250 m or 500 m between measurement stations was selected to cover an area of 15 km × 22 km. Edge detectors such as total horizontal derivative (THDR), analytic signal (AS), tilt derivative (TDR), enhanced total horizontal gradient of tilt derivative (ETHDR) were applied to map the subsurface structure. Depth was estimated by power spectrum analysis, tilt derivative, source parameter imaging (SPI), and 2D-forward modeling techniques. Spectral analysis and SPI suggest a depth to the basement ranging from near surface to 600 m. For some selected locations, depth was also calculated using the TDR technique suggesting depths from 160 to 400 m. 2D forward magnetic modeling using existing boreholes as constraints was carried out along four selected profiles and confirmed the presence of alternative horsts and grabens formed by parallel normal faults. The dominant structural trends inferred from THDR, AS, TDR, and ETHDR are N–S, NW–SE, NE–SW and E–W. This corresponds with the known structural trends in the area. Finally, a detailed structural map showing the magnetic blocks and the structural architecture of the Mygdonian Basin was drawn up by collating all of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

This map is reconstructed after Thanassoulas et al. (1987), Cheng et al. (1994) and Manakou et al. (2010)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arisoy, M. Ö., & Dikmen, Ü. (2013). Edge detection of magnetic sources using enhanced total horizontal derivative of tilt angle. Bulletin of the Earth Sciences Application and Research Center of Hacettepe University, 34(1), 73–82.

    Google Scholar 

  • Autio, U., Smirnov, M Yu., Savvaidis, A., Soupios, P., & Bastani, M. (2016). Combining electromagnetic measurements in the Mygdonian sedimentary basin, Greece. Journal of Applied Geophysics, 135, 261–269.

    Article  Google Scholar 

  • Bastani, M., Persson, L., Mehta, S., & Malehmir, A. (2015). Boat towed radio-magnetotellurics—A new technique and case study from the city of Stockholm. Geophysics, 80, B193–B202.

    Article  Google Scholar 

  • Bastani, M., Savvaidis, A., Pedersen, L. B., & Kalscheuer, T. (2011). CSRMT measurements in the frequency range of 1–250 kHz to map a normal fault in the Volvi basin, Greece. Journal of Applied Geophysics, 75, 180–195.

    Article  Google Scholar 

  • Bhattacharyya, B. K. (1965). Two dimensional harmonic analysis as a tool for magnetic interpretation. Geophysics, 30(5), 829–857.

    Article  Google Scholar 

  • Bhattacharyya, B. K. (1966). Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics, 31, 97–121.

    Article  Google Scholar 

  • Blakely, R. J., & Simpson, R. W. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51, 1494–1498.

    Article  Google Scholar 

  • BRGM, (1971). Etude Hydrogeologique du Basin de Mygdonia, O.A.E.S (in French).

  • Cassano, E., & Rocca, F. (1975). Interpretation of magnetic anomalies using spectral estimation techniques. Geophysical Prospecting, 23(4), 663–681.

    Article  Google Scholar 

  • Cheng, S., Fang, Z., Pavlides, S., & Chatzipetros, A. (1994). Preliminary study of the paleoseismicity of the southern Langada-Volvi Basin margin fault zone, Thessaloniki, Greece. Bulletin of the geological society of Greece, xxx(1), 401–407.

    Google Scholar 

  • Connard, G., Couch, R., & Gemperle, M. (1983). Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics, 48(3), 376–390.

    Article  Google Scholar 

  • Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J. Hinze (Ed.), The utility of regional gravity and magnetic anomaly maps (pp. 181–197). Tulsa: Society of Exploration Geophysics.

    Chapter  Google Scholar 

  • Dewey, J. F., & Sengör, A. M. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84–92.

    Article  Google Scholar 

  • Fedi, M., Quarta, T., & De Santis, A. (1997). Inherent power—law behavior of magnetic field power spectra from Spector and Grant ensemble. Geophysics, 62(4), 1143–1150.

    Article  Google Scholar 

  • Geosoft Oasis Montaj. (2008). Data processing and analysis systems for earth science applications (Ver. 7). Toronto: Geosoft Inc.

    Google Scholar 

  • GM-SYS. (2013). A Gravity and Magnetic Modeling Software Part of the Oasis Montaj Software Suite 7. Toronto: Geosoft Inc.

    Google Scholar 

  • Gurk, M., Smirnov, M.Yu., Savvaidis, A., Pedersen, L. B., & Ritter, O., (2008). A 3D Magnetotelluric study of the basement structure in the Mygdonian Basin (Northern Greece). In O. Ritter, H. Brasse (eds) Protokoll über das Kolloquium: Elektromagnetische Tiefenforschung, in Hotel Maxičky, Děčín, Czech Republic, 1–5 October 2007 (pp. 231–238).

  • Hancock, P. L., Chalmes, R. M. L., Altunel, E., & Cakir, Z. (1999). Travitonics: using travertines in active fault studies. Journal of Structural Geology, 21, 903–916.

    Article  Google Scholar 

  • Hatzfeld, D., Christodoulou, A. A., Scordilis, E. M., Panagiotopoulos D., & Hatzidimitriou, P. M. (1987). A microearthquake study of the Mygdonian graben (northern Greece). In Earth and Science Letters (vol. 81, No. 1986/87, pp. 379–396). Amsterdam: Elsevier Science Publishers B.V.

  • Hinze, W. J., Von Frese, R. R. B., & Saad, A. H. (2013). Gravity and magnetic exploration: principles, practices, and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ibraheem, I. M., Elawadi, E. A., & El-Qady, G. M. (2018). Structural interpretation of aeromagnetic data for the Wadi El Natrun area, northwestern desert, Egypt. Journal of African Earth Sciences, 139, 14–25. https://doi.org/10.1016/j.jafrearsci.2017.11.036.

    Article  Google Scholar 

  • Jacobshagen, V. (1986). Geologie von griechenland (pp. 1–163). Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Karagianni, E. E., Panagiotopoulos, D. G., Papazachos, C. B., & Burton, P. W. (1999). A study of shallow crustal structure in the Mygdonia Basin (N. Greece) based on the dispersion curves of Rayleigh waves. Journal of the Balkan Geophysical Society, 2(1), 3–14.

    Google Scholar 

  • Kockel, F., Mollat, H., & Walther, H. W. (1971). Geologie des Serbo-Mazedonischen Massivs und seines mesozoischen Rahmens (Nordgriechenland). Geologisches Jahrbuch, 89, 529–551.

    Google Scholar 

  • Lowrie, M. (2007). Fundamentals of geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Makra, K., & Chavez-Garcia, F. J. (2016). Site effects in 3D basins using 1D and 2D models: an evaluation of the differences based on simulations of the seismic response of Euroseistest. Bulletin of Earthquake Engineering, 14(4), 1177–1194.

    Article  Google Scholar 

  • Manakou, M., Raptakis D., Apostolidis P., Chavez-Garcia F. J., & Pitilakis, K. (2007). The 3D geological structure of the Mygdonian sedimentary Basin (Greece). 4th International Conference on Earthquake Geotechnical Engineering, June 25–28. Paper No. 1686.

  • Manakou, M. V., Raptakis, D. G., Chavez-Garcia, F. J., Apostolidis, P. I., & Pitilakis, K. D. (2010). 3D soil structure of the Mygdonian Basin for site response analysis. Soil Dynamics and Earthquake Engineering, 30(11), 1198–1211.

    Article  Google Scholar 

  • Marson, I., & Klingele, E. E. (1993). Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11), 1588–1595.

    Article  Google Scholar 

  • Miller, H. G., & Singh, V. (1994). Potential field tilt—A new concept for location of potential field sources. Journal of Applied Geophysics, 32(2–3), 213–217.

    Article  Google Scholar 

  • Oruç, B. (2011). Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia region, Turkey. Pure and Applied Geophysics, 168(10), 1769–1780. https://doi.org/10.1007/s00024-010-0211-0.

    Article  Google Scholar 

  • Oruç, B., & Keskinsezer, A. (2008). Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure and Applied Geophysics, 165(9–10), 1913–1927. https://doi.org/10.1007/s00024-008-0407-8.

    Article  Google Scholar 

  • Phillips, J. D. (1998). Processing and interpretation of aeromagnetic data for the Santa Cruz Basin-Patahonia Mountains area, South-Central Arizona. U. S. Geological Survey Open-File Report, 02-98.

  • Phillips, J. D., Hasen, R. O., & Blakely, R. J. (2007). The use of curvature in potential field interpretation. Exploration Geophysics, 38, 111–119.

    Article  Google Scholar 

  • Pilkington, M., & Tschirhart, V. (2017). Practical considerations in the use of edge detectors for geological mapping using magnetic data. Geophysics, 82(3), J1–J8. https://doi.org/10.1190/geo2016-0364.1.

    Article  Google Scholar 

  • Psilovikos, A. (1977). Paleographic development of the basin and Lake of Mygdonia (Langada-Volvi area, Greece). Ph.D. Thesis, University of Thessaloniki.

  • Psilovikos, A., & Sotiriadis, L. (1983). The neotectonic graben complex of the Serbomacedonian massif at the area of Promygdonia Basin in northern Greece. Clausthaler Geologische Abhandlungen, 44, 21–53.

    Google Scholar 

  • Raptakis, D. G., Manakou, M. V., Chavez-Garcia, F. J., Makra, K. A., & Pitilakis, K. D. (2005). 3D configuration of Mygdonian Basin and preliminary estimate of its site response. Soil Dynamics and Earthquake Engineering, 25, 871–887.

    Article  Google Scholar 

  • Saade, S. A. (2016). Edge detection and depth estimation of Galala El Bahariya Plateau, Eastern Desert-Egypt, from aeromagnetic data. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(1), 25–41. https://doi.org/10.1007/s40948-015-0019-6.

    Article  Google Scholar 

  • Salem, A., Williams, S., Fairhead, J. D., Ravat, D., & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26, 1502–1505.

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpretation aeromagnetic data. Geophysics, 35, 293–302.

    Article  Google Scholar 

  • Stampolidis, A., & Tsokas, G. N. (2002). Curie point depths of Macedonia and Thrace, N. Greece. Pure and Applied Geophysics, 159, 2659–2671. https://doi.org/10.1007/s00024-002-8752-5.

    Article  Google Scholar 

  • Talwani, M., & Heirtzler, J. R. (1964). Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape. in G. A. Parks (Ed.), Computers in the mineral industries, Part 1, Stanford University Publications, Geological Sciences, 9, 464-480.

  • Talwani, M., Warzel, J. L., & Landisman, M. (1959). Rapid gravity computation for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1), 49–59.

    Article  Google Scholar 

  • Thanassoulas, C., Tselentis, G.-A., & Traganos, G. (1987). A preliminary resistivity investigation (VES) of the Langada hot springs area in northern Greece. Geothermics, 16(3), 227–238.

    Article  Google Scholar 

  • Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPI™ method. Geophysics, 62(3), 807–813.

    Article  Google Scholar 

  • Tournas, D. (2005). Study of the geometry of the Mygdonian Basin in the area of the European Test Site with geophysical methods. MSc. thesis, Aristotle University, Thessaloniki, (in Greek).

  • Tranos, M. D., Papadimitriou, E. E., & Kilias, A. A. (2003). Thessaloniki-Gerakarou Fault Zone (TGFZ): The western extension of the 1978 Thessaloniki earthquake fault (Northern Greece) and seismic hazard assessment. Journal of Structural Geology, 25(12), 2109–2123.

    Article  Google Scholar 

  • Veranis, N. (2010). Hydrogeological study of the Granular aquifer system of Mygdonia. Un. report IGME, Thessaloniki, maps, sections.

  • Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116–119. https://doi.org/10.1190/1.1651454.

    Article  Google Scholar 

  • Widodo, W., Gurk, M., & Tezkan, B. (2016). Multi-dimensional interpretation of radiomagnetotelluric and transient electromagnetic data to study active faults in the Mygdonian Basin, Northern Greece. Journal of Environmental and Engineering Geophysics, 21(3), 121–133. https://doi.org/10.2113/JEEG21.3.121.

    Article  Google Scholar 

  • Won, I. J., & Bevis, M. (1987). Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and FORTRAN subroutines. Geophysics, 52(2), 232–238. https://doi.org/10.1190/1.1442298.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Marie Curie Reintegration Grant IGSEA—Integrated Nonseismic Geophysical Studies to Assess the Site Effect of the EUROSEISTEST Area in Northern Greece—PERG03-GA-2008-230915 {REF RTD REG/T.2 (2008)D/596232}, the School of Geology of the Aristotle University of Thessaloniki and the Institute of Engineering Seismology and Earthquake Engineering (ITSAK) in Thessaloniki. We thank Professor Konstantinos Albanakis, Dr. Alexandros Savvaidis, Dr. Juliane Adrian, and Dr. Hannah Langenbach and many of our colleagues for their support. We also thank two anonymous reviewers and Editor Nils Olsen for their constructive comments that have greatly improved the manuscript. The first author is hugely indebted to the Institute of International Education (IIE)—USA and to the University of Cologne for hosting him as a postdoctoral academic visitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael M. Ibraheem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibraheem, I.M., Gurk, M., Tougiannidis, N. et al. Subsurface Investigation of the Neogene Mygdonian Basin, Greece Using Magnetic Data. Pure Appl. Geophys. 175, 2955–2973 (2018). https://doi.org/10.1007/s00024-018-1809-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1809-x

Keywords

Navigation