Skip to main content
Log in

Stress-Associated Intrinsic and Scattering Attenuation from Laboratory Ultrasonic Measurements on Shales

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismic attenuation is sensitive to stress-induced subtle changes in the physical state of rocks. In this study, the stress- and frequency-associated attenuation is quantified through ultrasonic measurements on three differently oriented cylindrical shale samples under various axial stresses. As an improvement to the single-scattering model, the elastic Monte Carlo method is employed to investigate multiple-scattering attenuations by incorporating the boundary reflections and wave conversions. Our results show that, as the axial stress increases, the intrinsic attenuation decreases in all directions, while the scattering attenuation decreases slightly in the direction perpendicular to the bedding but increases largely and nonlinearly in other directions. These discrepancies result from different attenuation mechanisms. Both the intrinsic and scattering attenuation are found to be largest in the direction 45° to the bedding, but least in the perpendicular direction. The S-wave attenuation is larger and more sensitive to stress changes than P-wave attenuation due to its shorter wavelength. As expected from sandstone examples, the scattering attenuation in shales is significantly larger and more sensitive to stress changes than the intrinsic attenuation. The frequency dependence of scattering attenuation suggests that the peak frequency with the maximum scattering attenuation is independent of axial stresses, but varies in different directions of an individual rock with different heterogeneity and anisotropy scales. The peak frequency of S-coda is smaller and its peak scattering attenuation is larger than P-coda. In conclusion, the stress and frequency dependence of ultrasonic attenuations in shales differ largely in various directions, indicating significant anisotropy and heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adelinet, M., Fortin, J., & Guéguen, Y. (2011). Dispersion of elastic moduli in a porous-cracked rock: Theoretical predictions for squirt-flow. Tectonophysics, 503(1), 173–181. doi:10.1016/j.tecto.2010.10.012.

    Article  Google Scholar 

  • Adelinet, M., Fortin, J., Guéguen, Y., Schubnel, A., & Geoffroy, L. (2010). Frequency and fluid effects on elastic properties of basalt: Experimental investigations. Geophysical Research Letters. doi:10.1029/2009GL041660.

    Google Scholar 

  • Aki, K. (1980a). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors, 21(1), 50–60. doi:10.1016/0031-9201(80)90019-9.

    Article  Google Scholar 

  • Aki, K. (1980b). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth (1978–2012), 85(B11), 6496–6504. doi:10.1029/JB085iB11p06496.

    Article  Google Scholar 

  • Aki, K. (1982). Scattering and attenuation. Bulletin of the Seismological Society of America, 72(6B), S319–S330.

    Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research, 80(23), 3322–3342. doi:10.1029/JB080i023p03322.

    Article  Google Scholar 

  • Ba, J., Carcione, J. M., & Sun, W. (2015). Seismic attenuation due to heterogeneities of rock fabric and fluid distribution. Geophysical Journal International, 202(3), 1843–1847. doi:10.1093/gji/ggv255.

    Article  Google Scholar 

  • Bauer, A., Bhuiyan, M. H., Fjær, E., Holt, R. M., Lozovyi, S., Pohl, M., et al. (2016). Frequency-dependent wave velocities in sediments and sedimentary rocks: Laboratory measurements and evidences. The Leading Edge, 35(6), 490–494. doi:10.1190/tle35060490.1.

    Article  Google Scholar 

  • Bird, G. A. (1992). A contemporary implementation of the direct simulation Monte Carlo method. In M. Mareschal & B. L. Holian (Eds.), Microscopic simulations of complex hydrodynamic phenomena (pp. 239–253). Boston, MA: Springer, US.

    Chapter  Google Scholar 

  • Bouchon, M. (1979). Discrete wave number representation of elastic wave fields in three-space dimensions. Journal of Geophysical Research: Solid Earth, 84(B7), 3609–3614. doi:10.1029/JB084iB07p03609.

    Article  Google Scholar 

  • Chen, J. H., Froment, B., Liu, Q. Y., & Campillo, M. (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake. Geophysical Research Letters, 37(18), 109–118. doi:10.1029/2010GL044582.

    Article  Google Scholar 

  • Chen, W. L., Wen, Z., Ping, L., Deng, H. C., & Qin, L. I. (2013). Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 well, Southeast Sichuan Basin, China. Acta Petrologica Sinica, 29(3), 1073–1086.

    Google Scholar 

  • Chen, S., Zhu, Y., Wang, H., Liu, H., Wei, W., & Fang, J. (2011). Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy, 36(11), 6609–6616. doi:10.1016/j.energy.2011.09.001.

    Article  Google Scholar 

  • Cheng, C. H., & Johnston, D. H. (1981). Dynamic and static moduli. Geophysical Research Letters, 8(1), 39–42. doi:10.1029/GL008i001p00039.

    Article  Google Scholar 

  • Chouet, B. (1979). Temporal variation in the attenuation of earthquake coda near Stone Canyon, California. Geophysical Research Letters, 6(3), 143–146. doi:10.1029/GL006i003p00143.

    Article  Google Scholar 

  • Ciccotti, M., & Mulargia, F. (2004). Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophysical Journal International, 157(1), 474–477. doi:10.1111/j.1365-246X.2004.02213.x.

    Article  Google Scholar 

  • Curtis, M. E., Ambrose, R. J., & Sondergeld, C. H. (2010). Structural characterization of gas shales on the micro- and nano-scales. Richardson, Texas: Society of Petroleum Engineers (Canadian Unconventional Resources and International Petroleum Conference, 19–21 October, Calgary, Alberta, Canada, SPE-137693-MS)

  • David, E. C., Fortin, J., Schubnel, A., Guéguen, Y., & Zimmerman, R. W. (2013). Laboratory measurements of low- and high-frequency elastic moduli in Fontainebleau sandstone. Geophysics, 78(5), D369–D379. doi:10.1190/geo2013-0070.1.

    Article  Google Scholar 

  • Del Pezzo, E., Gresta, S., Patané, G., Patané, D., & Scarcella, G. (1987). Attenuation of short period seismic waves at Etna as compared to other volcanic areas. [journal article]. Pure and applied geophysics, 125(6), 1039–1050. doi:10.1007/bf00879367.

    Article  Google Scholar 

  • Dewhurst, D. N., Siggins, A. F., Sarout, J., Raven, M. D., & Nordgård-Bolås, H. M. (2011). Geomechanical and ultrasonic characterization of a Norwegian Sea shale. Geophysics, 76(3), WA101–WA111. doi:10.1190/1.3569599.

    Article  Google Scholar 

  • Dvorkin, J., Mavko, G., & Nur, A. (1991). The effect of cementation on the elastic properties of granular material. Mechanics of Materials, 12(3–4), 207–217.

    Article  Google Scholar 

  • Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophysical Journal International, 108(3), 787–800. doi:10.1111/j.1365-246X.1992.tb03470.x.

    Article  Google Scholar 

  • Fehler, M., & Sato, H. (2003). Coda. Pure and Applied Geophysics, 160(3–4), 541–554. doi:10.1007/PL00012549.

    Article  Google Scholar 

  • Foldy, L. L. (1945). The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review, 67(3–4), 107–119. doi:10.1103/PhysRev.67.107.

    Article  Google Scholar 

  • Fortin, J., Pimienta, L., Guéguen, Y., Schubnel, A., David, E. C., & Adelinet, M. (2014). Experimental results on the combined effects of frequency and pressure on the dispersion of elastic waves in porous rocks. The Leading Edge, 33(6), 648–654. doi:10.1190/tle33060648.1.

    Article  Google Scholar 

  • Frankel, A., & Wennerberg, L. (1987). Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation. Bulletin of the Seismological Society of America, 77(4), 1223–1251.

    Google Scholar 

  • Franklin, J. A., & Dusseault, M. B. (1989). Rock engineering. New York: McGraw-Hill.

    Google Scholar 

  • Friedrich, C., & Wegler, U. (2005). Localization of seismic coda at Merapi volcano (Indonesia). Geophysical Research Letters, 32(14), 337–349. doi:10.1029/2005GL023111.

    Article  Google Scholar 

  • Fukushima, Y., Nishizawa, O., Sato, H., & Ohtake, M. (2003). Laboratory Study on Scattering Characteristics of Shear Waves in Rock Samples. Bulletin of the Seismological Society of America, 93(1), 253–263. doi:10.1785/0120020074.

    Article  Google Scholar 

  • Gaebler, P. J., Sensschönfelder, C., & Korn, M. (2015). The influence of crustal scattering on translational and rotational motions in regional and teleseismic coda waves. Geophysical Journal International, 201(1), 355–371. doi:10.1093/gji/ggv006.

    Article  Google Scholar 

  • Gritto, R., Korneev, V. A., & Johnson, L. R. (1995). Low-frequency elastic-wave scattering by an inclusion: limits of applications. Geophysical Journal International, 120(3), 677–692. doi:10.1111/j.1365-246X.1995.tb01845.x.

    Article  Google Scholar 

  • Guo, M.-Q., & Fu, L.-Y. (2007). Stress associated coda attenuation from ultrasonic waveform measurements. Geophysical Research Letters, 34(9), 252–254. doi:10.1029/2007GL029582.

    Article  Google Scholar 

  • Guo, M.-Q., Fu, L.-Y., & Ba, J. (2009). Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophysical Journal International, 178(1), 447–456. doi:10.1111/j.1365-246X.2009.04159.x.

    Article  Google Scholar 

  • Gusev, A. A., & Abubakirov, I. R. (1987). Monte-Carlo simulation of record envelope of a near earthquake. Physics of the Earth and Planetary Interiors, 49(1), 30–36. doi:10.1016/0031-9201(87)90130-0.

    Article  Google Scholar 

  • Haruo, S., Fehler, M., & Takuto, M. (2012). Seismic wave propagation and scattering in the heterogeneous earth (2nd ed.). Berlin Heidelberg: Springer.

    Google Scholar 

  • Herraiz, M., & Espinosa, A. F. (1987). Coda waves: A review. Pure and applied geophysics, 125(4), 499–577. doi:10.1007/BF00879572.

    Article  Google Scholar 

  • Hoshiba, M. (1991). Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Physics of the Earth and Planetary Interiors, 67(1–2), 123–136. doi:10.1016/0031-9201(91)90066-Q.

    Article  Google Scholar 

  • Hoshiba, M. (1994). Simulation of coda wave envelope in depth dependent scattering and absorption structure. Geophysical Research Letters, 21(25), 2853–2856. doi:10.1029/94GL02718.

    Article  Google Scholar 

  • Hoshiba, M. (1997). Seismic coda wave envelope in depth-dependent S wave velocity structure. Physics of the Earth and Planetary Interiors, 104(1–3), 15–22. doi:10.1016/S0031-9201(97)00055-1.

    Article  Google Scholar 

  • Hoshiba, M., Sato, H., & Fehler, M. (1991). Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope A Monte-Carlo simulation of multiple isotropic scattering: a Monte-Carlo Simulation of Multiple Isotropic Scattering. Papers in Meteorology Geophysics, 42(2), 65–91. doi:10.2467/mripapers.42.65.

    Article  Google Scholar 

  • Ibáñez, J. M., Pezzo, E. D., Martini, M., Patané, D., Miguel, F. D., Vidal, F., et al. (1993). Estimates of coda-Q using a non-linear regression. Journal of Physics of the Earth, 41(4), 203–219. doi:10.4294/jpe1952.41.203.

    Article  Google Scholar 

  • Ishimaru, A. (1977). Theory and application of wave propagation and scattering in random media. Proceedings of the IEEE, 65(7), 1030–1061. doi:10.1109/PROC.1977.10612.

    Article  Google Scholar 

  • Jacobson, R. S. (1987). An investigation into the fundamental relationships between attenuation, phase dispersion, and frequency using seismic refraction profiles over sedimentary structures. Geophysics, 52(1), 72–87. doi:10.1190/1.1442242.

    Article  Google Scholar 

  • Jin, A., & Aki, K. (1986). Temporal change in coda Q before the Tangshan Earthquake of 1976 and the Haicheng Earthquake of 1975. Journal of Geophysical Research: Solid Earth, 91(B1), 665–673. doi:10.1029/JB091iB01p00665.

    Article  Google Scholar 

  • Johnston, J. E., & Christensen, N. I. (1995). Seismic anisotropy of shales. Journal of Geophysical Research: Solid Earth, 100(B4), 5991–6003. doi:10.1029/95JB00031.

    Article  Google Scholar 

  • Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, D. N., & Clennell, M. B. (2012). Laboratory characterisation of shale properties. Journal of Petroleum Science and Engineering, 88(Supplement C), 107–124. doi:10.1016/j.petrol.2012.01.023.

    Article  Google Scholar 

  • Karato, S., & Spetzler, H. A. (1990). Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Reviews of Geophysics, 28(4), 399–421. doi:10.1029/RG028i004p00399.

    Article  Google Scholar 

  • Kawahara, J., Ohno, T., & Yomogida, K. (2009). Attenuation and dispersion of antiplane shear waves due to scattering by many two-dimensional cavities. The Journal of the Acoustical Society of America, 125(6), 3589–3596. doi:10.1121/1.3124779.

    Article  Google Scholar 

  • Kawahara, J., & Yamashita, T. (1992). Scattering of elastic waves by a fracture zone containing randomly distributed cracks. Pure and Applied Geophysics, 139(1), 121–144. doi:10.1007/bf00876828.

    Article  Google Scholar 

  • Kikuchi, M. (1981). Dispersion and attenuation of elastic waves due to multiple scattering from cracks. Physics of the Earth and Planetary Interiors, 27(2), 100–105. doi:10.1016/0031-9201(81)90037-6.

    Article  Google Scholar 

  • Kinoshita, S. (1994). Frequency-dependent attenuation of shear waves in the crust of the southern Kanto area, Japan. Bulletin of the Seismological Society of America, 84(5), 1387–1396.

    Google Scholar 

  • Klimeš, L. (2002). Correlation functions of random media. [journal article]. Pure and Applied Geophysics, 159(7), 1811–1831. doi:10.1007/s00024-002-8710-2.

    Google Scholar 

  • Korneev, V. A., & Johnson, L. R. (1996). Scattering of P and S waves by a spherically symmetric inclusion. [journal article]. Pure and Applied Geophysics, 147(4), 675–718. doi:10.1007/bf01089697.

    Article  Google Scholar 

  • Kuteynikova, M., Tisato, N., Jänicke, R., & Quintal, B. (2014). Numerical modeling and laboratory measurements of seismic attenuation in partially saturated rock. Geophysics, 79(2), L13–L20. doi:10.1190/geo2013-0020.1.

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian Barnett shale. Journal of Sedimentary Research, 79(12), 848–861. doi:10.2110/jsr.2009.092.

    Article  Google Scholar 

  • Lucet, N., & Zinszner, B. E. (1992). Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks. Geophysics, 57(8), 1018–1026. doi:10.1190/1.1443313.

    Article  Google Scholar 

  • Margerin, L., Campillo, M., & Van Tiggelen, B. (2000). Monte Carlo simulation of multiple scattering of elastic waves. Journal of Geophysical Research: Solid Earth, 105(B4), 7873–7892. doi:10.1029/1999JB900359.

    Article  Google Scholar 

  • Matsunami, K. (1990). Laboratory measurements of spatial fluctuation and attenuation of elastic waves by scattering due to random heterogeneities. Pure and Applied Geophysics, 132(1), 197–220. doi:10.1007/bf00874363.

    Article  Google Scholar 

  • Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., & Zeng, Y. (1992). A comparative study of scattering, intrinsic, and coda Q −1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz. Journal of Geophysical Research: Solid Earth, 97(B5), 6643–6659. doi:10.1029/91JB03094.

    Article  Google Scholar 

  • Mayr, S. I., & Burkhardt, H. (2006). Ultrasonic properties of sedimentary rocks: effect of pressure, saturation, frequency and microcracks. Geophysical Journal International, 164(1), 246–258. doi:10.1111/j.1365-246X.2005.02826.x.

    Article  Google Scholar 

  • Mitchell, B. J. (1981). Regional variation and frequency dependence of Qβ in the crust of the United States. Bulletin of the Seismological Society of America, 71(5), 1531–1538.

    Google Scholar 

  • Müller, T. M., Gurevich, B., & Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics, 75(5), 75A147–175A164. doi:10.1190/1.3463417.

    Article  Google Scholar 

  • Niu, F., Silver, P. G., Daley, T. M., Cheng, X., & Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454(7201), 204–208. doi:10.1038/nature07111.

    Article  Google Scholar 

  • Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E, 56(1), 1135–1141. doi:10.1103/PhysRevE.56.1135.

    Article  Google Scholar 

  • Pervukhina, M., Gurevich, B., Golodoniuc, P., & Dewhurst, D. N. (2011). Parameterization of elastic stress sensitivity in shales. Geophysics, 76(3), 147–155. doi:10.1190/1.3554401.

    Article  Google Scholar 

  • Piane, C. D., Dewhurst, D. N., Siggins, A. F., & Raven, M. D. (2011). Stress-induced anisotropy in brine saturated shale. Geophysical Journal International, 184(2), 897–906. doi:10.1111/j.1365-246X.2010.04885.x.

    Article  Google Scholar 

  • Pimienta, L., Fortin, J., Borgomano, J. V. M., & Guéguen, Y. (2016). Dispersions and attenuations in a fully saturated sandstone: Experimental evidence for fluid flows at different scales. The Leading Edge, 35(6), 495–501. doi:10.1190/tle35060495.1.

    Article  Google Scholar 

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research: Solid Earth. doi:10.1029/2003JB002639.

    Google Scholar 

  • Przybilla, J., & Korn, M. (2008). Monte Carlo simulation of radiative energy transfer in continuous elastic random media—three-component envelopes and numerical validation. Geophysical Journal International, 173(2), 566–576. doi:10.1111/j.1365-246X.2008.03747.x.

    Article  Google Scholar 

  • Przybilla, J., Wegler, U., & Korn, M. (2009). Estimation of crustal scattering parameters with elastic radiative transfer theory. Geophysical Journal International, 178(2), 1105–1111. doi:10.1111/j.1365-246X.2009.04204.x.

    Article  Google Scholar 

  • Pujades, L. G., Ugalde, A., Canas, J. A., Navarro, M., Badal, F. J., & Corchete, V. (1997). Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian Peninsula). Geophysical Journal International, 129(2), 281–291. doi:10.1111/j.1365-246X.1997.tb01581.x.

    Article  Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74(4), 1149–1166.

    Google Scholar 

  • Rautian, T. G., & Khalturin, V. I. (1978). The use of the coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68(4), 923–948.

    Google Scholar 

  • Sato, H. (1977). Single isotropic scattering model including wave conversions simple theoretical model of the short period body wave propagation. Journal of Physics of the Earth, 25(2), 163–176.

    Article  Google Scholar 

  • Sato, H. (1982). Amplitude attenuation of impulsive waves in random media based on travel time corrected mean wave formalism. The Journal of the Acoustical Society of America, 71(3), 559–564. doi:10.1121/1.387525.

    Article  Google Scholar 

  • Sato, H. (1995). Formulation of the multiple non-isotropic scattering process in 3-D space on the basis of energy transport theory. Geophysical Journal International, 121(2), 523–531. doi:10.1111/j.1365-246X.1995.tb05730.x.

    Article  Google Scholar 

  • Sayers, C. M. (1999). Stress-dependent seismic anisotropy of shales. Geophysics, 64(1), 93–98. doi:10.1190/1.1444535.

    Article  Google Scholar 

  • Sayers, C. M. (2005). Seismic anisotropy of shales. Geophysical Prospecting, 53(5), 667–676. doi:10.1111/j.1365-2478.2005.00495.x.

    Article  Google Scholar 

  • Sayers, C. M., & den Boer, L. D. (2016). The elastic anisotropy of clay minerals. Geophysics, 81(5), C193–C203. doi:10.1190/geo2016-0005.1.

    Article  Google Scholar 

  • Shearer, P. M., & Earle, P. S. (2004). The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophysical Journal International, 158(3), 1103–1117. doi:10.1111/j.1365-246X.2004.02378.x.

    Article  Google Scholar 

  • Simmons, G., & Brace, W. F. (1965). Comparison of static and dynamic measurements of compressibility of rocks. Journal of Geophysical Research, 70(22), 5649–5656. doi:10.1029/JZ070i022p05649.

    Article  Google Scholar 

  • Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research: Solid Earth, 88(B1), 527–538. doi:10.1029/JB088iB01p00527.

    Article  Google Scholar 

  • Sipkin, S. A., & Jordan, T. H. (1979). Frequency dependence of Q ScS . Bulletin of the Seismological Society of America, 69(4), 1055–1079.

    Google Scholar 

  • Sivaji, C., Nishizawa, O., Kitagawa, G., & Fukushima, Y. (2002). A physical-model study of the statistics of seismic waveform fluctuations in random heterogeneous media. Geophysical Journal International, 148(3), 575–595. doi:10.1046/j.1365-246x.2002.01606.x.

    Article  Google Scholar 

  • Sondergeld, C. H., & Rai, C. S. (2011). Elastic anisotropy of shales. The Leading Edge, 30(3), 324–331. doi:10.1190/1.3567264.

    Article  Google Scholar 

  • Taylor, S. R., Bonner, B. P., & Zandt, G. (1986). Attenuation and scattering of broadband P and S waves across North America. Journal of Geophysical Research: Solid Earth, 91(B7), 7309–7325. doi:10.1029/JB091iB07p07309.

    Article  Google Scholar 

  • Tisato, N., & Quintal, B. (2013). Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophysical Journal International, 195(1), 342–351. doi:10.1093/gji/ggt259.

    Article  Google Scholar 

  • Toksoz, M. N., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks; I. Laboratory measurements. Geophysics, 44(4), 681–690. doi:10.1190/1.1440969.

    Article  Google Scholar 

  • Toksöz, M. N., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44(4), 681–690. doi:10.1190/1.1440969.

    Google Scholar 

  • Ugalde, A., & Carcolé, E. (2009). Comments on “Separation of Q i and Q s from passive data at Mt. Vesuvius: A reappraisal of the seismic attenuation estimates” by E. Del Pezzo et al. (2006). Physics of the Earth and Planetary Interiors, 173(1–2), 191–194. doi:10.1016/j.pepi.2008.10.001.

    Article  Google Scholar 

  • Walsh, J. B. (1966). Seismic wave attenuation in rock due to friction. Journal of Geophysical Research, 71(10), 2591–2599. doi:10.1029/JZ071i010p02591.

    Article  Google Scholar 

  • Wegler, U., Korn, M., & Przybilla, J. (2006). Modeling full seismogram envelopes using radiative transfer theory with born scattering coefficients. Pure and Applied Geophysics, 163(2–3), 503–531. doi:10.1007/s00024-005-0027-5.

    Article  Google Scholar 

  • Wei, W., & Fu, L. Y. (2014). Monte Carlo Simulation of Stress-Associated Scattering Attenuation from Laboratory Ultrasonic Measurements. Bulletin of the Seismological Society of America, 104(2), 931–943. doi:10.1785/0120130082.

    Article  Google Scholar 

  • Wesley, J. P. (1965). Diffusion of seismic energy in the near range. Journal of Geophysical Research, 70(20), 5099–5106. doi:10.1029/JZ070i020p05099.

    Article  Google Scholar 

  • Winkler, K. W. (1986). Estimates of velocity dispersion between seismic and ultrasonic frequencies. Geophysics, 51(1), 183–189. doi:10.1190/1.1442031.

    Article  Google Scholar 

  • Winterstein, D. F., & Paulsson, B. N. P. (1990). Velocity anisotropy in shale determined from crosshole seismic and vertical seismic profile data. Geophysics, 55(4), 470–479. doi:10.1190/1.1442856.

    Article  Google Scholar 

  • Wu, R.-S. (1982). Mean field attenuation and amplitude attenuation due to wave scattering. Wave Motion, 4(3), 305–316. doi:10.1016/0165-2125(82)90026-9.

    Article  Google Scholar 

  • Wu, R.-S. (1985). Multiple scattering and energy transfer of seismic waves—separation of scattering effect from intrinsic attenuation—I. Theoretical modelling. Geophysical Journal International, 82(1), 57–80. doi:10.1111/j.1365-246X.1985.tb05128.x.

    Article  Google Scholar 

  • Wu, R.-S., & Aki, K. (1988). Introduction: Seismic wave scattering in three-dimensionally heterogeneous earth. Pure and applied geophysics, 128(1), 1–6. doi:10.1007/bf01772587.

    Article  Google Scholar 

  • Yan, F., Han, D.-H., Yao, Q., & Zhao, L. (2014). Prediction of seismic wave dispersion and attenuation from ultrasonic velocity measurements. Geophysics, 79(5), WB1–WB8. doi:10.1190/geo2013-0416.1.

    Article  Google Scholar 

  • Yoshimoto, K. (2000). Monte Carlo simulation of seismogram envelopes in scattering media. Journal of Geophysical Research: Solid Earth, 105(B3), 6153–6161. doi:10.1029/1999JB900437.

    Article  Google Scholar 

  • Zemanek, J., & Rudnick, I. (1961). Attenuation and dispersion of elastic waves in a cylindrical bar. The Journal of the Acoustical Society of America, 33(10), 1283–1288. doi:10.1121/1.1908417.

    Article  Google Scholar 

  • Zeng, Y., Su, F., & Aki, K. (1991). Scattering wave energy propagation in a random isotropic scattering medium: 1. Theory. Journal of Geophysical Research: Solid Earth, 96(B1), 607–619. doi:10.1029/90JB02012.

    Article  Google Scholar 

  • Zhang, H., Thurber, C., & Rowe, C. (2003). Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bulletin of the Seismological Society of America, 93(5), 1904–1912. doi:10.1785/0120020241.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor Yves Guéguen and the anonymous reviewers for their valuable comments. This work was supported by the Strategic Leading Science and Technology Program (Class B) of the Chinese Academy of Sciences [Grant No. XDB10010400], the National Natural Science Foundation of China [Grant No. 41604035] and the China Postdoctoral Science Foundation [Grant No. 2016T90129].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yun Fu.

Appendices

Appendix: Tests on Computational Accuracy and Stability

Since there is no analytic solution or Green function of the multiple isotropic scattering models for inhomogeneous 3-D medium, we use two analytic solutions for a 3-D infinite homogeneous model to investigate the accuracy of the Monte Carlo simulation. The first one is an approximate solution of the radiative transfer equation for a 3-D isotropic scattering medium (Paasschens 1997):

$$E\left( {r,t} \right) \approx \frac{{We^{{ - g_{0} vt}} }}{{4\pi vr^{2} }}\delta \left( {t - \frac{r}{v}} \right) + W\frac{{\left( {1 - r^{2} /\left( {vt} \right)^{2} } \right)^{1/8} }}{{4\pi vt/\left( {3g_{0} } \right)^{3/2} }}e^{{ - g_{0} vt}} M\left( {g_{0} vt\left( {1 - \frac{{r^{2} }}{{\left( {vt} \right)^{2} }}} \right)^{3/4} } \right)H\left( {t - \frac{r}{v}} \right),$$
(20)

where W is the source energy density, g 0 is the scattering coefficient, v is the background velocity of the medium, t is the lapse time, r is the distance between the source and the receiver, δ is the Dirac function, H is the step function and

$$M\left( x \right) \equiv 8\left( {3x} \right)^{ - 3/2} \sum\limits_{n = 1}^{\infty } {\frac{{\varGamma \left( {\frac{3}{4}n + \frac{3}{2}} \right)}}{{\varGamma \left( {\frac{3}{4}n} \right)}}\frac{{x^{n} }}{n!}} \approx e^{x} \sqrt {1 + 2.026/x} , {\text{ where }}\varGamma \left( z \right) = \int_{0}^{\infty } {x^{z - 1} e^{ - x} {\text{d}}x} .$$
(21)

Here, Γ is the Gamma function. Except for the direct wave, the relative error of this approximation is in the order of 2–3% (Ugalde and Carcolé 2009). The second one is a complete integral solution to multiple isotropic scattered waves in a uniform random medium for an impulsive wave energy source (Zeng et al. 1991):

$$E\left( {r,t} \right) = \frac{{\delta \left( {t - \frac{r}{v}} \right)e^{{ - \left( {\eta_{i} + \eta_{s} } \right)vt}} }}{{4\pi vr^{2} }} + \sum\limits_{n = 1}^{2} {E_{n} \left( {r,t} \right) + \int_{ - \infty }^{ + \infty } {\frac{{e^{i\varOmega t} }}{2\pi }d\varOmega \cdot \int_{0}^{\infty } {\frac{{\left( {\frac{{\eta_{s} }}{k}} \right)^{3} \left[ {\tan^{ - 1} \left( {\frac{k}{{\left( {\eta_{i} + \eta_{s} } \right) + i\varOmega /v}}} \right)} \right]^{4} \sin \left( {kr} \right)}}{{2\pi^{2} vr\left[ {1 - \frac{{\eta_{s} }}{k}\tan^{ - 1} \left( {\frac{k}{{\left( {\eta_{i} + \eta_{s} } \right) + i\varOmega /v}}} \right)} \right]}}{\text{d}}k} } } ,$$
(22)

where E (r, t) represents the total wave energy at distance r at the lapse time t. η i and η s are the intrinsic and scattering coefficients, respectively. In Eq. (22), the first term represents the direct-wave energy and the second term indicates the nth-order scattered energy. The first- and second-order scattered wave energy terms are expressed as:

$$E_{1} \left( {r,t} \right) = \frac{{\eta_{s} H\left( {t - \frac{r}{v}} \right)e^{{ - \left( {\eta_{i} + \eta_{s} } \right)vt}} }}{4\pi rvt}\ln \frac{{1 + \frac{r}{vt}}}{{1 - \frac{r}{vt}}},$$
(23)
$$E_{2} \left( {r,t} \right) = \frac{{\eta_{s}^{2} H\left( {t - \frac{r}{v}} \right)e^{{ - \left( {\eta_{i} + \eta_{s} } \right)vt}} }}{16\pi } \cdot \left[ {\frac{{\pi^{2} }}{vt} - \frac{3}{r}\int_{0}^{{\frac{r}{vt}}} {\left( {\ln \frac{1 + \alpha }{1 - \alpha }} \right)^{2} {\text{d}}\alpha } } \right].$$
(24)

The third term in Eq. (22) is a sum of scattered wave energy for the orders higher than two. The integral with respect to k can be calculated using the method of discrete wavenumber sum (Bouchon 1979). It is observed from the integral solution that it is difficult to separate the intrinsic and scattering attenuation mathematically. However, the scattering effect becomes more dominant as the scattering order increases. It means that relatively accurate separation of intrinsic and scattering attenuation can be achieved by phenomenological study of coda waves.

Seismogram envelopes are synthesized for a 3-D infinite scattering medium characterized with the parameters: η i  = 0.0 km−1, η s  = g 0 = 0.01 km−1 and v = 3.15 km/s. In this section, the normalized time τ, the normalized distance ρ and the normalized radius R n of spherical volume at the receiver are used for comparison (Sato 1995):

$$\tau = g_{0} vt, \, \rho = g_{0} r, \, R_{\text{n}} = g_{0} r.$$
(25)

Figure 19 shows the normalized energy density at different normalized distances ρ = 0.8, 1.6 and 3.2. The average and plus or minus one standard deviation for 20 simulations are marked by the red solid lines and the black dotted lines, respectively. The number of particles used in this section is N = 107. The normalized radius of spherical volume used to estimate the spatial density of energy particles at the receiver is R n = 0.2. Except for ripples of the envelope at ρ = 3.2, the normalized energy density calculated using the Monte Carlo method is identical to that calculated using the analytic solution of Zeng et al. (1991) and Paasschens (1997) at different normalized distances. Ripples of the envelope in Zeng et al. (1991) are caused by the inaccurate calculation on the third term involving multiple integrals in Eq. (22). The ripples in the Monte Carlo solution scatter around the analytic solution, but do not show any apparent bias within one standard deviation. Increasing the number of particles will diminish the ripples. The broadness of the direct wave in the Monte Carlo solution is due to the use of a spherical volume instead of a point at the receiver.

Fig. 19
figure 19

Normalized energy density at the normalized distance ρ = 0.8, 1.6 and 3.2. The normalized radius of spherical volume at the receiver is R n = 0.2. The normalized energy density calculated with the Monte Carlo method is the average of 20 independent numerical simulations. The results (the red solid lines) are compared with the analytic solutions of Paasschens (1997) (the blue solid lines) and Zeng et al. (1991) (the green dashed lines). Standard deviations are indicated with the black dotted lines. The background velocity is V 0 = 3.15 km/s. The intrinsic and scattering coefficient is η i  = 0.00 km−1 and η i  = g 0 = 0.01 km−1, respectively. The parameters used in the Monte Carlo simulation are Δτ = 0.01 and N = 107

Dependence of the normalized energy density on Δτ is also investigated. Normalized seismogram envelopes with ρ = 1.6 and R n = 0.05 under numerical conditions Δτ = 0.01, 0.1, 0.2 and 0.4 are shown in Fig. 20. The average (the red solid lines) and standard deviation (the black dotted lines) are calculated by synthesizing 20 envelopes for each case. For comparison, the analytic solutions (the blue solid lines and green dash lines) are also plotted. As can be seen, the shapes of normalized energy density are identical if Δτ ≤ 0.1 which conforms with the decoupling principle expressed as Δτ ≪ 1.0 in the Monte Carlo simulation. As Δτ increases beyond 0.1, the normalized energy density calculated using the Monte Carlo method is slightly larger compared with the analytic solutions. Similar results are observed in Fig. 21 with R n = 0.10 and Fig. 22 with R n = 0.20. The mean free distance of the scattering medium is l 0 = 1/g 0 and thus the normalized mean free time is given by τ 0 = g 0 V 0 l 0/V 0 = 1. It can be inferred that the upper limit of the time sample interval in the calculation for accurate results is about one-tenth of the mean free time of the scattering medium.

Fig. 20
figure 20

Dependence of the normalized energy density on Δτ = 0.01, 0.1, 0.2 and 0.4 with ρ = 1.6 and R n = 0.05. The normalized energy density calculated with the Monte Carlo method is the average of 20 independent numerical simulations. The results (the red solid lines) are compared with the analytic solutions of Paasschens (1997) (the blue solid lines) and Zeng et al. (1991) (the green dashed lines). Standard deviations are indicated with black dotted lines. The set of parameters used in the simulation are identical to those in Fig. 19

Fig. 21
figure 21

Dependence of the normalized energy density on Δτ = 0.01, 0.1, 0.2 and 0.4 with ρ = 1.6 and R n = 0.10. The normalized energy density calculated with the Monte Carlo method is the average of 20 independent numerical simulations. The results (the red solid lines) are compared with the analytic solutions of Paasschens (1997) (the blue solid lines) and Zeng et al. (1991) (the green dashed lines). Standard deviations are indicated with the black dotted lines. The set of parameters used in the simulation are identical to those in Fig. 19

Fig. 22
figure 22

Dependence of the normalized energy density on Δτ = 0.01, 0.1, 0.2 and 0.6 with ρ = 1.6 and R n = 0.20. The normalized energy density calculated with the Monte Carlo method is the average of 20 independent numerical simulations. The results (the red solid lines) are compared with the analytic solutions of Paasschens (1997) (the blue solid lines) and Zeng et al. (1991) (the green dashed lines). Standard deviations are indicated with the black dotted lines. The set of parameters used in the simulation are identical to those in Fig. 19

Figure 23 shows the dependence of the normalized energy density on the radius of spherical volume at the receiver. With the normalized radius R n increasing from 0.03 to 0.2, envelopes of the energy density for the direct wave begin to broaden and decrease while the arrival time is still identifiable from the energy peak. Also, influence of the size of spherical volume on the coda portion is not too severe for the normalized radius of 0.05, 0.1 and 0.2. Note that numerical instability occurs in the case of R n = 0.03 and 0.05, especially at large lapse time. The decay rate of coda portion for R n = 0.05 is still trackable in the analytical solutions. Therefore, the radius of the spherical volume at the receiver should not be too small and its proper lower limit is about one-eighth of the source–receiver distance (normalized to be 1), that is 1/8 = 0.125.

Fig. 23
figure 23

Dependence of the normalized energy density on the normalized radius R n = 0.03, 0.05, 0.10 and 0.20 with ρ = 0.8 and Δτ = 0.01. The normalized energy density calculated with the Monte Carlo method is the average of 20 independent numerical simulations. The results (the red solid lines) are compared with the analytic solutions of Paasschens (1997) (the blue solid lines) and Zeng et al. (1991) (the green dashed lines). The set of parameters used in the simulation are identical to those in Fig. 19

Data and resources

The data for this research were from a laboratory ultrasonic measurement of 3-D cylindrical shale samples in the Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. It is not publicly available yet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Fu, LY., Wei, W. et al. Stress-Associated Intrinsic and Scattering Attenuation from Laboratory Ultrasonic Measurements on Shales. Pure Appl. Geophys. 175, 929–962 (2018). https://doi.org/10.1007/s00024-017-1705-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1705-9

Keywords

Navigation