Skip to main content
Log in

Scenario-Based Seismic Hazard Analysis for the Xianshuihe Fault Zone, Southwest China

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Xianshuihe fault zone consists of left-lateral, segmented strike-slip faults, which produce strong and relatively frequent earthquakes, and exposes millions of people to the risk of strong motion and earthquake-induced geologic hazards in Southwest China. Seismicity in this fault zone exhibits typical features of characteristic earthquakes. The stochastic finite-fault model was used to generate time-histories and peak values of strong ground motion at near-fault locations for the characteristic earthquakes. First, the source parameters were determined and verified by comparing them with the simulated time-histories and intensity distribution and observations from the 2014 Kangding earthquake (M w 6.0). Then, scenario-based ground-motion hazard maps were produced from simulated ground motions of characteristic earthquakes. The scenario-based ground-motion hazard maps can be directly compared with historical and future earthquakes in the Xianshuihe fault zone. Scenario-based seismic hazard analysis also has other advantages. Our results show that current design ground motion for the Xianshuihe Fault area is not adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Ran (2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, R., Luo, Z. L., et al. (1991). Field study of a highly active fault zone: the Xianshuihe fault of southwestern China. Geological Society of America Bulletin, 103, 1178–1199.

    Article  Google Scholar 

  • An, Y. F. (2016). Boundary features of the seismic rupture segments along the Xianshuihe fault zone. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese).

    Google Scholar 

  • Anderson, G. A., & Brune, J. N. (1999). Probabilistic seismic hazard analysis without the ergodic assumption. Seismological Research Letters, 70, 19–28.

    Article  Google Scholar 

  • Boore, D. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73, 1865–1894.

    Google Scholar 

  • Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87(2), 327–341.

    Google Scholar 

  • CEA (China Earthquake Administration). (2015). Provisional regulations on instrument seismic intensity calculation: http://www.scdzj.gov.cn/zwgk/zcfg/bmgz/201503/t20150306_32610.html.

  • Chen, H.F., Dai, J.W., Sun, B.T., Huang, S., (2012). Investigation and preliminary analysis on seismic damage of structures subjected to Yushu Ms7.1 earthquake. 15th World Conference on Earthquake Engineering.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • Gong, M., Lin, S., & Xie, L. (2015). Seismic intensity map and typical structural damage of 2010 Ms 7.1 Yushu earthquake in China. Natural Hazards, 77(2), 847–866.

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment-magnitude scale. Journal of Geophysical Research, 84, 2348–2350.

    Article  Google Scholar 

  • Hartzell, S. (1978). Earthquake aftershocks as Green’s functions. Geophysical Research Letters, 5, 1–14.

    Article  Google Scholar 

  • Kato, N., Lei, X. L., & Wen, X. Z. (2007). A synthetic seismicity model for the Xianshuihe fault, southwestern China: simulation using a rate- and state-dependent friction law. Geophysical Journal International, 169, 286–300.

    Article  Google Scholar 

  • Li, T. F. (1997). The Xianshuihe fault zone and assessment of strong earthquake risk (p. 121P). Sichuan: Science and Technology Press of Sichuan.

    Google Scholar 

  • McGuire, R.K. (2004). Seismic hazard and risk analysis: Earthquake Engineering Research Institute MNO-10, p 240.

  • Motazedian, D., & Atkinson, G. M. (2005). Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95(3), 995–1010.

    Article  Google Scholar 

  • Mulargia, F., Stark, P.B., Geller, R.J. (2016). Why is probabilistic seismic hazard analysis (PSHA) still used? Physics of the Earth and Planetary Interiors.

  • National Research Council (NRC). (1988). Probabilistic seismic hazard analysis, report of the panel on seismic hazard analysis (p. 97). Washington: National Academy Press.

    Google Scholar 

  • NSPRC (National Standard of the People’s Republic of China). (2001). Seismic ground motion parameter zonation map of China (GB18306-2001).

  • NSPRC (National Standard of the People’s Republic of China). (2016). Seismic ground motion parameter zonation map of China (GB18306-2015).

  • Pan, H., Gao, M. T., & Xie, F. R. (2013). The earthquake activity model and seismicity parameters in the new seismic hazard map of China. Technology for Earthquake Disaster Prevention, 8(1), 11–23. (in Chinese).

    Google Scholar 

  • Papadimitriou, E., Wen, X., Karakostas, V., & Jin, X. (2004). Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China. Pure and Applied Geophysics, 161, 1683–1707.

    Article  Google Scholar 

  • Peresan, A., & Panza, G. F. (2012). Improving earthquake hazard assessments in Italy: an alternative to “Texas Sharpshooting”. Eos, 93, 538.

    Article  Google Scholar 

  • Petersen, M. D., Moschetti, M. P., & Powers, P. M. (2014). Documentation for the 2014 update of the United States national seismic hazard maps. US Geological Survey Open-File Report, 1091, 1–243.

    Google Scholar 

  • Ran, H. L. (2014). A synthetic seismicity model for the northwestern portion of the Xianshuihe fault, southwestern China: simulation using the Monte Carlo method, based on historical earthquake data. Bulletin of the Seismological Society of America, 104(2), 898–912.

    Article  Google Scholar 

  • Schwartz, D. D., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681–5698.

    Article  Google Scholar 

  • Shi, B. P., & Liu, B. Y. (2007). Development of attenuation relation for the near fault ground motion from the characteristic earthquake. Acta Seismologica Sinica, 29(4), 391–399. (in Chinese).

    Google Scholar 

  • Stein, S., Geller, R., & Liu, M. (2011). Bad assumptions or bad luck: why earthquake hazard maps need objective testing. Seismological Research Letters, 82, 623–626.

    Article  Google Scholar 

  • Stein, S., & Wysession, M. (2002). An introduction to seismology, earthquakes and earth structure (pp. 266–269). New Jersey: Blackwell Publishing.

    Google Scholar 

  • Stirling, M., McVerry, G., Gerstenberger, M., et al. (2012). National seismic hazard model for New Zealand: 2010 update. Bulletin of the Seismological Society of America, 102, 1514–1542.

    Article  Google Scholar 

  • Stucchi, M., Meletti, C., & Montaldo, V. (2011). Seismic hazard assessment (2003–2009) for the Italian Building Code. Bulletin of the Seismological Society of America, 101, 1885–1911.

    Article  Google Scholar 

  • Tang, R. C., Han, W. B., et al. (1993). Active fault of Sichuan and earthquake [M]. Beijing: Earthquake Press.

    Google Scholar 

  • Waldhauser, F., & Ellsworth, W. (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward Fault California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.

    Article  Google Scholar 

  • Wang, Z. (2011). Seismic hazard assessment: issues and alternatives. Pure and Applied Geophysics, 168, 11–25.

    Article  Google Scholar 

  • Wang, Z. (2012). Comment on “PSHA validated by Quasi observational means” by R.M.W. Musson. Seismological Research Letters, 83, 714–716.

    Article  Google Scholar 

  • Wang, Z. (2015). Predicting or forecasting of earthquake and the resulting ground motion hazards: a dilemma for earth scientists. Seismological Research Letters, 86, 1–5.

    Article  Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., et al. (2003). Crustal structure beneath the Songpan-Ganzi orogenic belt. Acta Seismologica Sinica, 25(3), 229–241. (in Chinese).

    Google Scholar 

  • Wang, Z., Orton, A. M., Wang, L., & Woolery, E. W. (2016). Seismic hazard mapping and mitigation policy development in the central USA and western China. Natural Hazards, 81, 387–404. doi:10.1007/s11069-015-2086-y.

    Article  Google Scholar 

  • Wang, H. Y., Xie, L. L., & Tao, X. X. (2008). Finite fault source model for predicting near-fault strong ground motion. Earth Science Journal of China University of Geosciences, 33(6), 843–851. (in Chinese).

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wen, X. Z. (2000). Character of rupture segmentation on the Xianshuihe-Anninghe-Zemuhe fault zone, western Sichuan. Seismology and Geology, 22(3), 239–249. (in Chinese).

    Google Scholar 

  • Wen, X. Z., Allen, C. R., & Luo, Z. L. (1989). Segmentation, geometric features and their seismotectonic implications for the Holocene Xianshuihe fault zone. Acta Seismologica Sinica, 11(4), 362–371. (in Chinese).

    Google Scholar 

  • Wesnousky, S. G. (1994). The Gutenberg-Richter or characteristic earthquake distribution—which is it. Bulletin of the Seismological Society of America, 84, 1940–1959.

    Google Scholar 

  • Xiong, T. Y., Yao, X., & Zhang, Y. S. (2010). A review on study of activity of Xianshuihe fault zone since the Holocene. Journal of Geomechanics, 16(2), 176–188. (in Chinese).

    Google Scholar 

  • Yi, G. X., Long, F., Wen, X. Z., et al. (2015). Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, southwestern China. Chinese Journal of Geophysics, 58(4), 1205–1219. (in Chinese).

    Google Scholar 

  • Yu, T., & Li, X. (2015). Empirical estimation of Vs30 in the Sichuan and Gansu province. China Earthquake, Engineering Journal, 37(2), 525–533.

    Google Scholar 

  • Zhou, R. J., He, Y. L., Huang, Z. Z., et al. (2001). The slip rate and strong earthquake recurrence interval on the Qian-ning, Kangding segment of the Xianshuihe fault zone. Acta Seismologica Sinica, 23(3), 250–261. (in Chinese).

    Google Scholar 

  • Zhu, A. L., Xu, X. W., Zhou, Y. S., et al. (2005). Relocation of small earthquakes in western Sichuan, China and its implications for active tectonics. Chinese Journal of Geophysics, 48(3), 629–636. (in Chinese).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Institute of Crustal Dynamics of the China Earthquake Administration (No. ZDJ2015-03), Beijing Natural Science Foundation(8174078) and the China Scholarship Council. The strong ground-motion data were provided by the China Strong Motion Network Centre at the Institute of Engineering Mechanics of the China Earthquake Administration. Meg Smath of the Kentucky Geological Survey helped to edit this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Seth Carpenter, N., Wang, Z. et al. Scenario-Based Seismic Hazard Analysis for the Xianshuihe Fault Zone, Southwest China. Pure Appl. Geophys. 175, 707–720 (2018). https://doi.org/10.1007/s00024-017-1686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1686-8

Keywords

Navigation