Skip to main content
Log in

Near-Field Probabilistic Seismic Hazard Analysis of Metropolitan Tehran Using Region-Specific Directivity Models

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Ground motions are affected by directivity effects at near-fault regions which result in low-frequency cycle pulses at the beginning of the velocity time history. The directivity features of near-fault ground motions can lead to significant increase in the risk of earthquake-induced damage on engineering structures. The ordinary probabilistic seismic hazard analysis (PSHA) does not take into account such effects; recent studies have thus proposed new frameworks to incorporate directivity effects in PSHA. The objective of this study is to develop the seismic hazard mapping of Tehran City according to near-fault PSHA procedure for different return periods. To this end, the directivity models required in the modified PSHA were developed based on a database of the simulated ground motions. The simulated database was used in this study because there are no recorded near-fault data in the region to derive purely empirically based pulse prediction models. The results show that the directivity effects can significantly affect the estimate of regional seismic hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aagaard, B. T., Hall, J. F., & Heaton, T. H. (2004). Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi–Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 94(1), 155–170.

    Article  Google Scholar 

  • Alavi, B., & Krawinkler, H. (2004). Behavior of moment-resisting frame structures subjected to near-fault ground motions. Earthquake Engineering and Structural Dynamics, 33(6), 687–706.

    Article  Google Scholar 

  • Ashtari, M., Hatzfeld, D., & Kamalian, N. (2005). Microseismicity in the region of Tehran. Tectonophysics, 395(3), 193–208.

    Article  Google Scholar 

  • Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501.

    Article  Google Scholar 

  • Berberian, M., Qorashi, M., Arzhang-ravesh, B., & Mohajer-Ashjai, A. (1983), Recent tectonics, seismotectonics and earthquake-fault hazard investigation in the greater Tehran region: Contribution to the seismotectonics of Iran, Part V. Geological Survey of Iran. Report no. 56.

  • Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 89(1), 120–139.

    Google Scholar 

  • Berberian, M., & Yeats, R. S. (2001). Contribution of archaeological data to studies of earthquake history in the Iranian plateau. Journal of Structural Geology, 23, 563–584.

    Article  Google Scholar 

  • Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635–676.

    Article  Google Scholar 

  • Bray, J. D., & Rodriguez-Marek, A. (2004). Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 24(11), 815–828.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5 % damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171.

    Article  Google Scholar 

  • Chandler, A. M., & Lam, N. T. (2001). Performance-based design in earthquake engineering: A multi-disciplinary review. Engineering Structures, 23(12), 1525–1543.

    Article  Google Scholar 

  • Chioccarelli, E., & Iervolino, I. (2013). Near-source seismic hazard and design scenarios. Earthquake Engineering and Structural Dynamics, 42(4), 603–622.

    Article  Google Scholar 

  • Chioccarelli, E., & Iervolino, I. (2014). Sensitivity analysis of directivity effects on PSHA. Bollettino di Geofisica Teoricaed Applicata, 55(1), 41–53.

    Google Scholar 

  • Dabaghi, M., & Der Kiureghian, A. (2014), Stochastic Modeling and Simulation of Near-Fault Ground Motions for Performance-Based Earthquake Engineering, PEER Report No. 2014/20. University of California, Berkeley, CA.

  • Gallovič, F., & Brokešová, J. (2007). Hybrid k-squared source model for strong ground motion simulations: Introduction. Physics of the Earth and Planetary Interiors, 160(1), 34–50.

    Article  Google Scholar 

  • Ghasemi, H., Zare, M., Fukushima, Y., & Koketsu, K. (2009). An empirical spectral ground-motion model for Iran. Journal of Seismology, 13(4), 499–515.

    Article  Google Scholar 

  • Ghayamghamian, M. R., & Hisada, Y. (2007). Near-fault strong motion complexity of the 2003 Bam earthquake (Iran) and low-frequency ground motion simulation. Geophysical Journal International, 170(2), 679–686.

    Article  Google Scholar 

  • Gholipour, Y., Bozorgnia, Y., Rahnama, M., Berberian, M., & Shojataheri, J. (2008). Probabilistic seismic hazard analysis, phase Igreater Tehran regions, Final report. Faculty of Engineering, University of Tehran, Tehran.

  • Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5), 2095–2123.

    Article  Google Scholar 

  • Hayden, C. P. (2014). Liquefaction-induced building performance and near-fault ground motions. Ph.D. dissertation. University of California, Berkeley, CA.

  • Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84(4), 1216–1228.

    Google Scholar 

  • Hisada, Y., & Bielak, J. (2003). A theoretical method for computing near-fault ground motions in layered half-spaces considering static offset due to surface faulting, with a physical interpretation of fling step and rupture directivity. Bulletin of the Seismological Society of America, 93(3), 1154–1168.

    Article  Google Scholar 

  • Hisada, Y., & Bielak, J. (2004), Effects of Sedimentary Layers on directivity pulse and fling step. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C.

  • Iervolino, I., & Cornell, C. A. (2008). Probability of occurrence of velocity pulses in near-source ground motions. Bulletin of the Seismological Society of America, 98(5), 2262–2277.

    Article  Google Scholar 

  • Japan International Cooperation Agency (JICA). (2000). The study on seismic microzoning of the greater Tehran area in the Islamic Republic of Iran. Tokyo: Final Report to the Government of the Islamic Republic of Iran.

    Google Scholar 

  • Joshi, V. (2013), Near-fault forward-directivity aspects of strong ground motions in the 2010–11 Canterbury Earthquakes, Master of Engineering Thesis. University of Canterbury, Christchurch, New Zealand.

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161(8), 1655–1681.

    Article  Google Scholar 

  • Mai, P. M., Spudich, P., & Boatwright, J. (2005). Hypocenter locations in finite-source rupture models. Bulletin of the Seismological Society of America, 95(3), 965–980.

    Article  Google Scholar 

  • Mavroeidis, G. P., & Papageorgiou, A. S. (2003). A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3), 1099–1131.

    Article  Google Scholar 

  • McGuire, R. K. (2004). Seismic hazard and risk analysis. Oakland, CA: Earthquake Engineering Research Institute.

    Google Scholar 

  • Nicknam, A., Hosseini, A., Jamnani, H. H., & Barkhordari, M. A. (2013). Reproducing fling-step and forward directivity at near source site using of multi-objective particle swarm optimization and multi taper. Earthquake Engineering and Engineering Vibration, 12(4), 529–540.

    Article  Google Scholar 

  • Nowroozi, A. A. (2010). Probability of peak ground horizontal and peak ground vertical accelerations at Tehran and surrounding areas. Pure and Applied Geophysics, 167(12), 1459–1474.

    Article  Google Scholar 

  • Olsen, K. B., Day, S. M., & Bradley, C. R. (2003). Estimation of Q for long-period (>2 s) waves in the Los Angeles basin. Bulletin of the Seismological Society of America, 93(2), 627–638.

    Article  Google Scholar 

  • Panza, G. F., Romanelli, F., & Vaccari, F. (2000). Realistic modelling of waveforms in laterally heterogeneous anelastic media by modal summation. Geophysical Journal International, 143(2), 340–352.

    Article  Google Scholar 

  • Saffari, H., Kuwata, Y., Takada, S., & Mahdavian, A. (2012). Updated PGA, PGV, and spectral acceleration attenuation relations for Iran. Earthquake Spectra, 28(1), 257–276.

    Article  Google Scholar 

  • Scandella, L., Lai, C. G., Spallarossa, D., & Corigliano, M. (2011). Ground shaking scenarios at the town of Vicoforte, Italy. Soil Dynamics and Earthquake Engineering, 31(5), 757–772.

    Article  Google Scholar 

  • Shafiee, A., & Azadi, A. (2007). Shear-wave velocity characteristics of geological units throughout Tehran City, Iran. Journal of Asian Earth Sciences, 29(1), 105–115.

    Article  Google Scholar 

  • Shahi, S. K. (2013). A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment. Doctoral Dissertation, Stanford University.

  • Shahi, S. K., & Baker, J. W. (2011). An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 101(2), 742–755.

    Article  Google Scholar 

  • Shahi, S. K., & Baker, J. W. (2014). An efficient algorithm to identify strong velocity pulses in multi-component ground motions. Bulletin of the Seismological Society of America, 104(5), 2456–2466.

    Article  Google Scholar 

  • Somerville, P. G. (2003). Magnitude scaling of the near fault rupture directivity pulse. Physics of the Earth and Planetary Interiors, 137(1), 201–212.

    Article  Google Scholar 

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1), 59–80.

    Article  Google Scholar 

  • Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1), 199–222.

    Article  Google Scholar 

  • Spudich, P., & Chiou, B. S. (2008). Directivity in NGA earthquake ground motions: Analysis using isochrone theory. Earthquake Spectra, 24(1), 279–298.

    Article  Google Scholar 

  • Talebian, M., et al. (2004). The 2003 Bam (Iran) earthquake: Rupture of a blind strike‐slip fault. Geophysical Research Letters, 31(11), 1–4 (article ID L11611).

  • Tchalenko, J.S., Berberian, M., Iranmanesh, H., Bailly, M., & Arsovsky, M. (1974). Tectonic framework of the Tehran region. Materials for the study of seismotectonics of Iran, North-Central Iran. Geol. Surv. Iran. Report No. 29.

  • Tothong, P., Cornell, C. A., & Baker, J. (2007). Explicit directivity-pulse inclusion in probabilistic seismic hazard analysis. Earthquake Spectra, 23(4), 867–891.

    Article  Google Scholar 

  • Wang, H., & Tao, X. (2003). Relationships between moment magnitude and fault parameters: Theoretical and semi-empirical relationships. Earthquake Engineering and Engineering Vibration, 2(2), 201–211.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Yaghmaei-Sabegh, S. (2013). Analysis of applicability of seismic intensity estimation using Fourier spectrum of ground motions for Iranian earthquakes. Pure and Applied Geophysics, 170(4), 597–606.

    Article  Google Scholar 

  • Yaghmaei-Sabegh, S., & Lam, N. (2010). Analysis of applicability of seismic intensity estimation using Fourier spectrum of ground motions for Iranian earthquakes. Soil Dynamics and Earthquake Engineering, 30, 525–535.

    Article  Google Scholar 

  • Yazdani, A., & Kowsari, M. (2013). Earthquake ground-motion prediction equations for northern Iran. Natural Hazards, 69(3), 1877–1894.

    Article  Google Scholar 

  • Yazdani, A., Nicknam, A., Eftekhari, S. N., & Dadras, E. Y. (2016), Sensitivity of near‐fault PSHA results to input variables based on information theory. Bulletin of the Seismological Society of America.

  • Zafarani, H., Vahidifard, H., & Ansari, A. (2012). Sensitivity of ground-motion scenarios to earthquake source parameters in the Tehran metropolitan area, Iran. Soil Dynamics and Earthquake Engineering, 43, 342–354.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azad Yazdani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, A., Nicknam, A., Dadras, E.Y. et al. Near-Field Probabilistic Seismic Hazard Analysis of Metropolitan Tehran Using Region-Specific Directivity Models. Pure Appl. Geophys. 174, 117–132 (2017). https://doi.org/10.1007/s00024-016-1389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1389-6

Keywords

Navigation