Skip to main content
Log in

Two High-Sensitivity Laser Strainmeters Installed in the Canfranc Underground Laboratory (Spain): Instrument Features from 100 to 0.001 mHz

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Two laser strainmeters are being operated in the Canfranc Underground Laboratory (LSC, Central Pyrenees, Spain) at about 350 m depth. One of the two laser strainmeters (GAL16, striking 76o) is located about 670 m from the Spanish entrance of a decommissioned train tunnel, along the side wall of one of the bypasses connecting a recent highway tunnel to the train tunnel. The other strainmeter (LAB780, striking −32o) is located about 780 m from the Spanish entrance of the train tunnel, inside two narrow side halls parallel to and built at the same time as the train tunnel. Their mechanical and optical setups derive from a previous installation at Gran Sasso, Italy, with some changes and improvements. Here we show the main instrument features in the frequency range of 100–0.001 mHz. At frequencies lower than 4 mHz, strain noise compares well with the best laser strainmeters made till now, while at higher frequencies strain noise is higher than at Kamioka, Japan, probably because of frequency instabilities of the laser source. Environmental (air temperature and pressure) effects on measured strain are quite small; thus, signal-to-noise ratio in the tidal bands is unusually high. In particular, diurnal Ψ 1 and Φ 1 tides clearly emerge from noise even using a 2-year-long strain record, giving the opportunity to improve previous determinations of the Free Core Nutation parameters from strain data as soon as more data are acquired. The features of the LSC strainmeters allow investigating the Earth in a very broad frequency range, with a signal-to-noise ratio as good as or better than that of the best laser strainmeters in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnew, D. C. (1981). Nonlinearity in rock: evidence from earth tides. Journal of Geophysical Research, 86, 3969–3978.

    Article  Google Scholar 

  • Agnew, D. C. (1986). Strainmeters and tiltmeters. Reviews of Geophysics, 24, 579–624.

    Article  Google Scholar 

  • Agnew, D.C., & Wyatt, F. K. (2003). Long-base laser strainmeters: A review, Scripps Institution of Oceanography Technical Report, Permalink. http://escholarship.org/uc/item/21z72167.

  • Amoruso, A., Botta, V., & Crescentini, L. (2012). Free Core Resonance parameters from strain data: sensitivity analysis and results from the Gran Sasso (Italy) extensometers. Geophysical Journal International, 189, 923–936. doi:10.1111/j.1365-246X.2012.05440.x.

    Article  Google Scholar 

  • Amoruso, A., & Crescentini, L. (2009a). Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake, Italy. Geophysical Research Letters, 36, L24306. doi:10.1029/2009GL041503.

    Article  Google Scholar 

  • Amoruso, A., & Crescentini, L. (2009b). The geodetic laser interferometers at Gran Sasso, Italy: Recent modifications and correction for local effects. Journal of Geodynamics, 48, 120–125. doi:10.1016/j.jog.2009.09.025.

    Article  Google Scholar 

  • Amoruso, A., & Crescentini, L. (2010). Limits on earthquake nucleation and other pre-seismic phenomena from continuous strain in the near field of the 2009 L’Aquila earthquake. Geophysical Research Letters, 37, L10307. doi:10.1029/2010GL043308.

    Article  Google Scholar 

  • Amoruso, A., & Crescentini, L. (2016). Nonlinear and minor ocean tides in the Bay of Biscay from the strain tides observed by two geodetic laser strainmeters at Canfranc (Spain). Journal of Geophysical Research: Oceans, 121, 4873–4887. doi:10.1002/2016JC011733.

    Google Scholar 

  • Amoruso, A., Crescentini, L., Martino, S., Petitta, M., & Tallini, M. (2014). Correlation between groundwater flow and deformation in the fractured carbonate Gran Sasso aquifer (INFN underground laboratories, central Italy). Water Resources Research, 50, 4858–4876. doi:10.1002/2013WR014491.

    Article  Google Scholar 

  • Amoruso, A., Crescentini, L., Morelli, A., & Scarpa, R. (2002). Slow rupture of an aseismic fault in a seismogenic region of Central Italy. Geophysical Research Letters, 29(24), 2219. doi:10.1029/2002GL016027.

    Article  Google Scholar 

  • Amoruso, A., Crescentini, L., Petitta, M., Rusi, S., & Tallini, M. (2011). Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrological Processes, 25, 1754–1764. doi:10.1002/hyp.7933.

    Article  Google Scholar 

  • Amoruso, A., Crescentini, L., & Scarpa, R. (2000). Removing tidal and atmospheric effects from Earth deformation measurements. Geophysical Journal International, 140, 493–499.

    Article  Google Scholar 

  • Araya, A., Takamori, A., Morii, W., Hayakawa, H., Uchiyama, T., Ohashi, M., et al. (2010). Analyses of far-field coseismic crustal deformation observed by a new laser distance measurement system. Geophysical Journal International, 181, 127–140.

    Article  Google Scholar 

  • Beavan, J., & Goulty, N. R. (1977). Earth strain observations made with the Cambridge laser strainmeter. Geophysical Journal of the Royal Astronomical Society, 48, 293–305.

    Article  Google Scholar 

  • Ben-Zion, Y., & Allam, A. A. (2013). Seasonal thermoelastic strain and postseismic effects in Parkfield borehole dilatometers. Earth Planet Science Letters, 379, 120–126. doi:10.1016/j.epsl.2013.08.024.

    Article  Google Scholar 

  • Berger, J., & Levine, J. (1974). The spectrum of Earth strain from 10−8 to 102 Hz. Journal of Geophysical Research, 79, 1210–1214.

    Article  Google Scholar 

  • Bonaccorso, A., Linde, A., Currenti, G., Sacks, S., & Sicali, A. (2016). The borehole dilatometer network of Mount Etna: A powerful tool to detect and infer volcano dynamics. Journal of Geophysical Research, 121, 4655–4669. doi:10.1002/2016JB012914.

    Google Scholar 

  • Borsa, A. A., Agnew, D. C., & Cayan, D. R. (2014). Ongoing drought-induced uplift in the western United States. Science, 345(6204), 1587–1590. doi:10.1126/science.1260279.

    Article  Google Scholar 

  • Canitano, A., Hsu, Y. J., Lee, H. M., Hsin-Ming, A. T. Linde, & Sacks, S. (2015). Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: source parameters and limits of very short-term strain detection. Earth Planet and Space, 67, 1–15. doi:10.1186/s40623-015-0284-1.

    Article  Google Scholar 

  • Crescentini, L., Amoruso, A., Fiocco, G., & Visconti, G. (1997). Installation of a high-sensitivity laser strainmeter in a tunnel in central Italy. Review of Scientific Instruments, 68(8), 3206–3210.

    Article  Google Scholar 

  • Crescentini, L., Amoruso, A., & Scarpa, R. (1999). Constraints on slow earthquake dynamics from a swarm in Central Italy. Science, 286, 2132–2134.

    Article  Google Scholar 

  • Díaz, J., Ruíz, M., Crescentini, L., Amoruso, A., & Gallart, J. (2014). Seismic monitoring of an Alpine mountain river. Journal of Geophysical Research: Solid Earth, 119, 3276–3289. doi:10.1002/2014JB010955.

    Google Scholar 

  • Gao, S. S., Silver, P. G., & Linde, A. T. (2000). Analysis of deformation data at Parkfield, California: Detection of a long-term strain transient. Journal of Geophysical Research, 105(B2), 2955–2967. doi:10.1029/1999JB900383.

    Article  Google Scholar 

  • Gladwin, M. T. (1984). High precision multi component borehole deformation monitoring. Review of Scientific Instruments, 55, 2011–2016.

    Article  Google Scholar 

  • Goulty, N. R., King, G. C. P., & Wallard, A. J. (1974). Iodine stabilized laser strainmeter. Geophysical Journal of the Royal Astronomical Society, 39, 269–282.

    Article  Google Scholar 

  • Johnston, M. J. S., Borcherdt, R. D., Linde, A. T., & Gladwin, M. T. (2006). Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction, and tremor. Bulletin of the Seismological Society of America, 96, S56–S72.

    Article  Google Scholar 

  • Kobe, M., Jahr, T., Pöschel, W., & Kukowski, N. (2016). Comparing a new laser strainmeter array with an adjacent, parallel running quartz tube strainmeter array. Review of Scientific Instruments, 87, 034502. doi:10.1063/1.4942433.

    Article  Google Scholar 

  • Levine, J., & Hall, J. L. (1972). Design and operation of a methane absorption stabilized laser strainmeter. Journal of Geophysical Research, 77, 2595–2609.

    Article  Google Scholar 

  • Linde, A. T., Agustsson, K., Sacks, I. S., & Stefansson, R. (1993). Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature, 365, 737–740. doi:10.1038/365737a0.

    Article  Google Scholar 

  • Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L., & Bilham, R. G. (1996). A slow earthquake sequence on the San Andreas Fault. Nature, 383, 65–68. doi:10.1038/383065a0.

    Article  Google Scholar 

  • MicroG Lacoste (2007). ML-1 Polarization-Stabilized HeNe Laser, brochure. http://www.microglacoste.com/pdf/ml1-brochure.pdf. Accessed 8 March 2017.

  • Milyukov, V. K., Klyachko, B. S., Myasnikov, A. V., Striganov, P. S., Yanin, A. F., & Vlasov, A. N. (2005). A laser interferometer-deformograph for monitoring the crust movement. Instruments and Experimental Techniques, 48(6), 780–795.

    Article  Google Scholar 

  • Milyukov, V., Mironov, A., Kravchuk, V., Amoruso, A., & Crescentini, L. (2013). Global deformations of the Eurasian plate and variations of the Earth rotation rate. Journal of Geodynamics, 67, 97–105.

    Article  Google Scholar 

  • Mukai, A., Takemoto, S., & Yamamoto, T. (2004). Fluid core resonance revealed from a laser extensometer at the Rokko-Takao station, Kobe, Japan. Geophysical Journal International, 156, 22–28.

    Article  Google Scholar 

  • Park, J., Amoruso, A., Crescentini, L., & Boschi, E. (2008). Long-period toroidal earth free oscillations from the great Sumatra–Andaman earthquake observed by paired laser extensometers in Gran Sasso, Italy. Geophysical Journal International, 173, 887–905. doi:10.1111/j.1365-246X.2008.03769.x.

    Article  Google Scholar 

  • Richter, B., Wenzel, H.-G., Zürn, W., & Klopping, F. (1995). From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Physics of the Earth and Planetary Interiors, 91, 131–148.

    Article  Google Scholar 

  • Rutman, J., & Walls, F. L. (1991). Characterization of frequency stability in precision frequency sources. Proceedings of the IEEE, 79, 952–960.

    Article  Google Scholar 

  • Sacks, I. S., Suyehiro, S., Evertson, D. W., & Yamagishi, Y. (1971). Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps. Papers in Meteorology and Geophysics, 22, 195–207.

    Article  Google Scholar 

  • Takanami, T., Linde, A. T., Sacks, S. I., Kitagawa, G., & Peng, H. (2013). Modeling of the post-seismic slip of the 2003 Tokachi-oki earthquake M 8 off Hokkaido: Constraints from volumetric strain. Earth Planet and Space, 65(731), 731–738. doi:10.5047/eps.2012.12.003.

    Article  Google Scholar 

  • Takemoto, S., Araya, A., Akamatsu, J., Morii, W., Momose, H., Ohashi, M., et al. (2004). A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan. Journal of Geodynamics, 38, 477–488.

    Article  Google Scholar 

  • Tanimoto, T., Heki, H., & Artru-Lambin, J. (2015). Interaction of solid earth, atmosphere, and ionosphere. In G. Schubert (Ed.), Treatise on geophysics (2nd ed., Vol. 4, pp. 421–443). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Venedikov, A. P., Arnoso, J., & Vieira, R. (2005). New version of program VAV for tidal data processing. Computers & Geosciences, 31, 667–669. doi:10.1016/j.cageo.2004.12.001.

    Article  Google Scholar 

  • Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM.

    Book  Google Scholar 

  • Wenzel, H. G. (1996). The nanogal software: Earth tide data processing package ETERNA 3.30. Bulletin d’Information des Marées Terrestres, 124, 9425–9439.

    Google Scholar 

  • Zürn, W., Ferreira, A. M. G., Widmer-Schnidrig, R., Lentas, K., Rivera, L., & Clévédé, E. (2015). High-quality lowest-frequency normal mode strain observations at the Black Forest Observatory (SW-Germany) and comparison with horizontal broad-band seismometer data and synthetics. Geophysical Journal International, 203, 1787–1803.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Verdiana Botta for her help in the early stage of the LSC strainmeter installation and data processing. This is a contribution of the Geodyn project (MICINN ICTS2009-33). Figures were produced using the Grace plotting tool (http://plasma-gate.weizmann.ac.il/Grace/) and the Inkscape vector graphics editor (https://inkscape.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Amoruso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoruso, A., Crescentini, L., Bayo, A. et al. Two High-Sensitivity Laser Strainmeters Installed in the Canfranc Underground Laboratory (Spain): Instrument Features from 100 to 0.001 mHz. Pure Appl. Geophys. 175, 1727–1737 (2018). https://doi.org/10.1007/s00024-017-1553-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1553-7

Keywords

Navigation