Skip to main content
Log in

Quantitative Analysis of Seismicity in Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude–frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adeli, H. (1982). The Sirch (Kerman, Iran) Earthquake of 28 July 1981—A field investigation. Bulletin of the Seismological Society of America, 72, 841–861.

    Google Scholar 

  • Ahmadi, G., Mostaghel, N., & Nowroozi, A. A. (1989). Probabilistic seismic risk for various peak ground accelerations. Iranian Journal of Science and Technology, 13, 115–156.

    Google Scholar 

  • Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114(B1), B01310.

    Article  Google Scholar 

  • Allmendinger, R. W., Reilinger, R., & Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano, Tectonics, 26, TC3013. doi:10.1029/2006TC002.030.

  • Altamimi, Z., Métivier, L., & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research. doi:10.1029/2011JB008930.

  • Ambraseys, N., & Melville, C. (1982). A History of Persian Earthquakes, 219 pp., Cambridge University Press, Cambridge.

  • Ambraseys, N. N. (1977). The Seismicity of Kuhistan. Iran, The Geographical Journal, 143. doi:10.2307/1795,872.

  • Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 July 1895. Journal of Earthquake Engineering, 01(02), 293–317. doi:10.1142/S1363246997000131.

    Google Scholar 

  • Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research, 108(B1).

  • Amorése, D. (2007). Applying a change-point detection method on frequency-magnitude distributions. Bulletin of the Seismological Society of America, 97(5), 1742–1749. doi:10.1785/0120060181.

    Article  Google Scholar 

  • Authemayou, C., Bellier, O., Chardon, D., Benedetti, L., Malekzade, Z., Claude, C., et al. (2009). Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophysical Journal International, 178(1), 524–540. doi:10.1111/j.1365-246X.2009.04191.x.

    Article  Google Scholar 

  • Bahroudi, A., & Koyi, H. (2003). Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach. Journal of the Geological Society, 160(5), 719–733.

    Article  Google Scholar 

  • Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(15), 15635–15637.

    Article  Google Scholar 

  • Berberian, M. (1976). Contribution to the Seismotectonics of Iran, Part II, Report 39, Tech. rep., Geol. Surv. Iran.

  • Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3), 193–224.

    Article  Google Scholar 

  • Berberian, M., & King, G. C. P. (1981). Towards a plaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.

    Article  Google Scholar 

  • Berberian, M., & Walker, R. (2010). seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ’High-Alborz’, Iran. Geophysical Journal International, 182(3), 1577–1602. doi:10.1111/j.1365-246X.2010.04705.x.

    Article  Google Scholar 

  • Berberian, M., Asudeh, I., & Arshadi, S. (1979). Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19 December 1977. Earth and Planetary Science Letters, 42(3), 456–462. doi:10.1016/0012-821X(79)90055-4.

    Article  Google Scholar 

  • Berberian, M., Qorashi, M., Jackson, J., Priestley, K., & Wallace, T. (1992). The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726–1755.

    Google Scholar 

  • Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering. doi:10.1007/s10518-009-9147-0.

  • Brown, L., Wang, K., & Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value, Geophysical Research Letters, 42(24), 10595–10600. doi:10.1002/2015GL066361.

    Article  Google Scholar 

  • Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009.

    Article  Google Scholar 

  • Cardozo, N., & Allemindigner, R. W. (2009). SSPX: A program to compute strain from displacement/velocity data. Computational GeoSciences, 35, 1343–1357.

    Article  Google Scholar 

  • Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J.-F., Hinderer, J., et al. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183(3), 1287–1301.

    Article  Google Scholar 

  • Dogan, B., & Karakas, A. (2013). Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 Mw 7.1 Van earthquake (East Anatolian Region, Turkey). Journal of Structural Geology, 46, 99–114. doi:10.1016/j.jsg.2012.10.001.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Article  Google Scholar 

  • Ekströem, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. doi:10.1016/j.pepi.2012.04.002.

    Article  Google Scholar 

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. doi:10.1111/j.1365-246X.2006.03127.x.

    Article  Google Scholar 

  • Falcon, N. L. (1974). Southern Iran: Zagros mountains, in Mesozoic-Cenozoic Orogenic Belts. Gological Society of London Special Publication, 4, 199–211.

    Article  Google Scholar 

  • Frohlich, C. (2006). Deep Earthquakes. Cambridge, United Kingdom, Cambridge University Press, p. 592.

  • Gao, L., & Wallace, T. C. (1995). The 1990 Rudbar-Tarom Iranian earthquake sequence: Evidence for slip partitioning. Journal of Geophysical Research, 100(B8), 15317–15332.

    Article  Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  • Guest, B., Axen, G. J., Lam, P. S., & Hassanzadeh, J. (2006). Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere, 2(1), 35–52.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.

    Google Scholar 

  • Hassani, B., Zafarani, H., Farjoodi, J., & Ansari, A. (2011). Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran. Soil Dynamics and Earthquake Engineering, 31(10), 1397–1413.

    Article  Google Scholar 

  • Heimpel, M. (1997). Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388(6645), 865–868.

    Article  Google Scholar 

  • Herring, T. A., King, R. W., & McCulsky, S. C. (2010). GLOBK reference manual, global Kalman filter VLBI and GPS analysis program, Release 10.4, Department of Earth, Atmospheric, and Planetary Sciences, MIT.

  • Hollingsworth, J., Nazari, H., Ritz, J.-F., Salamati, R., Talebian, M., & Bahroudi, A., et al. (2010). Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake. Journal of Geophysical Research. doi:10.1029/2009JB007185, b12313.

  • Hu, F., Zhang, Z., & Chen, X. (2016). Investigation of earthquake jump distance for strike-slip step overs based on 3D dynamic rupture simulations in an elastic half-space, Journal of Geophysical Research, 121(2), 994–1006. doi:10.1002/2015JB012696.

  • Jackson, J., Haines, J., & Holt, W. (1995). The accomodation of Arabia-Eurasia plate convergence in Iran. Journal of Geophysical Research, 100, 15205–15219. doi:10.1029/95JB01,294.

    Article  Google Scholar 

  • Kamer, Y., & Hiemer, S. (2015). Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research, 120(7), 5191–5214.

    Google Scholar 

  • Kanamori, H., & Allen, C. R. (2013). Earthquake Repeat Time and Average Stress Drop. American Geophysical Union, pp. 227–235. doi:10.1029/GM037p0227.

  • Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.

    Google Scholar 

  • Khodaverdian, A., Zafarani, H., & Rahimian, M. (2015). Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau. Tectonics, 34(10), 2190–2220.

    Article  Google Scholar 

  • Knopoff, L., & Gardner, J. K. (1972). Higher seismic activity during local night on the raw worldwide earthquake catalogue. Geophysical Journal of the Royal Astronomical Society, 28(3), 311–313.

    Article  Google Scholar 

  • Kondorskaya, N., &  Shebalin, N. (2010). New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977, Tech. rep., NOAA, National Geophysical Data Center, Boulder, Colorado, USA.

  • Kostrov, B. V., &  Das, S. (1988). Principles of Earthquakes Source Mechanics. Cambridge University Press, Cambridge, p .286.

  • Lay, T., & Wallace, T. (1995). Modern Global Seismology. International Geophysics. California, United States, Elsevier Science, p 521.

  • Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N., & Schmittbuhl, J. (2014). Fluid-induced earthquakes with variable stress drop. Journal of Geophysical Research, 119(12), 8900–8913. doi:10.1002/2014JB011282.

    Google Scholar 

  • McGill, S. F., Spinler, J. C., McGill, J. D., Bennett, R. A., Floyd, M. A., Fryxell, J. E., et al. (2015). Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacific-North America plate boundary through the San Bernardino Mountains, California. Journal of Geophysical Research, 120(4), 2772–2793.

    Google Scholar 

  • Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research. 110(B3), B03403.

    Article  Google Scholar 

  • Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., et al. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217–226.

    Article  Google Scholar 

  • Mirzaei, N., Gao, M., & Chen, Y. (1997). Seismicity in major seismotectonic proviences of Iran. Earthquake Research in China, 11, 351–361.

    Google Scholar 

  • Mirzaei, N., Gao, M., & Chen, Y. (1999). Delineation of potential seismic sources for seismic zoning of Iran. Journal of Seismology, 3, 17–30.

    Article  Google Scholar 

  • Mousavi, Z., Walpersdorf, A., Walker, R., Tavakoli, F., Pathier, E., Nankali, H., et al. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region, Earth and Planet. Science Letters, 377, 287–298.

    Google Scholar 

  • Mullick, M., Riguzzi, F., & Mukhopadhyay, D. (2009). Estimates of motion and strain rates across active faults in the frontal part of eastern Himalayas in North Bengal from GPS measurements. Terra Nova, 21, 410–415.

    Article  Google Scholar 

  • Nakamura, T., Suzuki, S., Sadeghi, H., Fatemi Aghda, S. M., Matsushima, T., Ito, Y., Hosseini, S. K., Gandomi, A. J., & Maleki, M. (2005), Source fault structure of the 2003 Bam earthquake, southeastern Iran, inferred from the aftershock distribution and its relation to the heavily damaged area: Existence of the Arg-e-Bam fault proposed. Geophysical Research Letters. doi:10.1029/2005GL022631.

  • National Geophysical Data Center, NOAA (2016), National Geophysical Data Center / World Data Service (NGDC/WDS): Global Significant Earthquake Database. http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1. doi:10.7289/V5TD9V7K, online; Accessed Jan 2016.

  • Nazari, H., Ritz, J.-F., Salamati, R., Shafei, A., Ghassemi, A., Michelot, J.-L., et al. (2009). Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2), 1028–1041. doi:10.1111/j.1365-246X.2009.04173.x.

    Article  Google Scholar 

  • Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., et al. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy, 77(7–8), 411–422.

    Article  Google Scholar 

  • Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research, 119(4), 3561–3583.

    Google Scholar 

  • Nowroozi, A. A., & Ahmadi, G. (1986). Analysis of earthquake risk in Iran based on seismotetonic proviences. Tectonophysics, 122, 89–114.

    Article  Google Scholar 

  • Nur, A., & Mavko, G. (1974). Postseismic viscoelastic rebound. Science, 183(4121), 204–206.

    Article  Google Scholar 

  • Okal, E. A., & Romanowicz, B. A. (1994). On the variation of b-values with earthquake size. Physics of the Earth and Planetary Interiors, 87(1–2), 55–76. doi:10.1016/0031-9201(94)90021-3.

    Article  Google Scholar 

  • Ottemöller, L., Voss, P., & Havskov, J. (2013). SEISAN earthquake analysis software for Windows. Linux and MacOSX: Solaris.

  • Riznichenko, Y. V. (1965). Seismic rock flow, in dynamics of the Earth’s crust. Moscow: Nauka.

    Google Scholar 

  • Savage, J., & Prescott, W. (1978). Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83(B7), 3369–3376.

    Article  Google Scholar 

  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. doi:10.1002/2014GL062863.

    Article  Google Scholar 

  • Schorlemmer, D., & Wiemer, S. (2005). Earth science: Microseismicity data forecast rupture area. Nature, 434(7037), 1086–1086.

    Article  Google Scholar 

  • Shabanian, E., Bellier, O., Siame, L., Abbassi, M. R., Bourlés, D., & Braucher, R., et al. (2012). The Binalud Mountains: A key piece for the geodynamic puzzle of NE Iran. Tectonics, 31(6), doi:10.1029/2012TC003183, tC6003.

  • Sorbi, M. R., Nilfouroushan, F., & Zamani, A. (2012). Seismicity patterns associated with the September 10th, 2008 Qeshm earthquake, South Iran. International Journal of Earth Sciences, 101(8), 2215–2223.

    Article  Google Scholar 

  • Sugan, M., Kato, A., Miyake, H., Nakagawa, S., & Vuan, A. (2014). The preparatory phase of the 2009 Mw 6.3 L’Aquila earthquake by improving the detection capability of low-magnitude foreshocks. Geophysical Research Letters, 41(17), 6137–6144.

    Article  Google Scholar 

  • Talebian, M., Fielding, E. J., Funning, G. J., Ghorashi, M., Jackson, J., & Nazari, H., et al. (2004). The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault. Geophysical Research Letters. doi:10.1029/2004GL020058.

  • Tatar, M., & Hatzfeld, D. (2009). Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June. Geophysical Journal International, 176(2), 529–541.

    Article  Google Scholar 

  • Tavakoli, B., & Ghafory Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annals of Geophysics, 42, 1013–1021.

    Google Scholar 

  • Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H., Hatzfeld, D., Tatar, M., et al. (2008). Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters, 275(3–4), 342–347. doi:10.1016/j.epsl.2008.08.030.

    Article  Google Scholar 

  • Unglert, K., Savage, M. K., Fournier, N., Ohkura, T., & Abe, Y. (2011). Shear wave splitting, vP/vS, and GPS during a time of enhanced activity at Aso caldera, Kyushu. Journal of Geophysical Research, 116(B11). doi:10.1029/2011JB008520.

  • Vallée, M. (2013). Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nature Communications, 4, 2606.

    Article  Google Scholar 

  • Walters, R., Parsons, B., & Wright, T. (2014). Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. Journal of Geophysical Research, 119(6), 5215–5234.

    Google Scholar 

  • Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., et al. (2014). Present day kinematics and fault slip rates in eastern Iran derived from 11 years of GPS data. Journal of Geophysical Research, 119, 1359–1383.

    Google Scholar 

  • Wiemer, S., & Schorlemmer, D. (2007). ALM: An asperity-based likelihood model for California. Seismological Research Letters, 78(1), 134–140.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45, 259–302.

    Article  Google Scholar 

  • Wyss, M., Liang, B., Tanigawa, W., & Wu, X. (1992). Comparison of orientations of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii. Journal of Geophysical Research, 97(B4), 4769–4790.

    Article  Google Scholar 

  • Wyss, M., Schorlemmer, D., & Wiemer, S. (2000). Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. Journal of Geophysical Research, 105(B4), 7829–7844.

    Article  Google Scholar 

  • Yamasaki, T., Wright, T. J., & Houseman, G. A. (2014). Weak ductile shear zone beneath a major strike-slip fault: Inferences from earthquake cycle model constrained by geodetic observations of the western North Anatolian Fault Zone. Journal of Geophysical Research, 119(4), 3678–3699.

    Google Scholar 

  • Zafarani, H., & Hassani, B. (2013). Site response and source spectra of S waves in the Zagros region, Iran. Journal of Seismology, 17(2), 645–666.

    Article  Google Scholar 

  • Zafarani, H., Hassani, B., & Ansari, A. (2012). Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dynamics and Earthquake Engineering, 42, 197–218.

    Article  Google Scholar 

  • Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of Iran: Insight from seismic and geodetic computations. Pure and Applied Geophysics, 171, 1219–1236. doi:10.1007/s00024-013-0711-9.

    Article  Google Scholar 

  • Zielke, O., & Arrowsmith, J. (2008). Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution. Geophysical Research Letters, 35(24), L24301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Raeesi.

Appendix

Appendix

See Tables 3 and 4.

Table 3 GPS stations in Iran and Oman, their locations, velocities (\(mm\,year^{-1}\)) and their \(1\sigma\) uncertainties with respect to Eurasia-fixed frame (EURA\(\_\)I08)
Table 4 Geodetic (G) and seismic (S) strain rate axes or magnitude at grid nodes 100 km apart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeesi, M., Zarifi, Z., Nilfouroushan, F. et al. Quantitative Analysis of Seismicity in Iran. Pure Appl. Geophys. 174, 793–833 (2017). https://doi.org/10.1007/s00024-016-1435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1435-4

Keywords

Navigation