Skip to main content
Log in

Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this work, we employ the \({\bar{\partial }}\)-steepest descent method to investigate the Cauchy problem of the Wadati–Konno–Ichikawa (WKI) equation with initial conditions in weighted Sobolev space \({\mathcal {H}}({\mathbb {R}})\). The long time asymptotic behavior of the solution q(xt) is derived in a fixed space-time cone \(S(y_{1},y_{2},v_{1},v_{2})=\{(y,t)\in {\mathbb {R}}^{2}: y=y_{0}+vt, ~y_{0}\in [y_{1},y_{2}], ~v\in [v_{1},v_{2}]\}\). Based on the resulting asymptotic behavior, we prove the soliton resolution conjecture of the WKI equation which includes the soliton term confirmed by \(N({\mathcal {I}})\)-soliton on discrete spectrum and the \(t^{-\frac{1}{2}}\) order term on continuous spectrum with residual error up to \(O(t^{-\frac{3}{4}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Boston (1989)

    MATH  Google Scholar 

  2. Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 72, 1722–1805 (2019)

    Article  MATH  Google Scholar 

  3. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  ADS  MATH  Google Scholar 

  4. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Amer. Math. Soc. 146, 1713–1729 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A 472(2195), 20160588 (2016)

    ADS  MATH  Google Scholar 

  6. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266(9), 5209–5253 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Herrmann, J.: Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region. J. Opt. Soc. Am. B 8, 1507–1511 (1991)

    Article  ADS  Google Scholar 

  8. Porsezian, K., Nithyanandan, K., Raja, R.V.J., Shukla, P.K.: Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system. J. Opt. Soc. Am. B 29, 2803–2813 (2012)

    Article  ADS  Google Scholar 

  9. Wadati, M., Konno, K., Ichikawa, Y.: A generalization of inverse scattering method. J. Phys. Soc. Jpn. 46, 1965–1966 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Wadati, M., Konno, K., Ichikawa, Y.: New integrable nonlinear evolution equations. J. Phys. Soc. Jpn. 47, 1689–1700 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ichikawa, Y., Konno, K., Wadati, M.: Nonlinear transverse oscillation of elastic beams under tension. J. Phys. Soc. Jpn. 50, 1799–1802 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Konno, K., Ichikawa, Y., Wadati, M.: A loop soliton propagation along a stretched rope. J. Phys. Soc. Jpn. 50, 1025–1026 (1981)

    Article  ADS  Google Scholar 

  13. Qiao, Z.J.: A kind of Hamiltonian systems with the C. Neumann constraint and WKI hierarchy. J. Math. Res. Expos. 13, 377–343 (1993)

    MATH  Google Scholar 

  14. Qiao, Z.J.: Completely integrable Bargmann system associated with the WKI soliton hierarchy. Acta Liaoning Univ. (Nat. Ed.) 22, 26–32 (1995)

    Google Scholar 

  15. Qu, C.Z., Zhang, D.B.: The WKI model of type II arises from motion of curves in \(E^{3}\). J. Phys. Soc. Jpn. 74, 2941–2944 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Qiao, Z.J.: Commutator representation of WKI hierarchy. Chin. Sci. Bull. 37, 763–764 (1992)

    Google Scholar 

  17. Qiao, Z.J.: A completely integrable system and the parametric representations of solutions of the WKI hierarchy. J. Math. Phys. 36, 3535–3560 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Qiao, Z.J., Cao, C., Strampp, W.: Category of nonlinear evolution equations, algebraic structure, and r-matrix. J. Math. Phys. 44, 701–722 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Van Gorder, R.A.: Orbital stability for stationary solutions of the Wadati–Konno–Ichikawa–Shimizu equation. J. Phys. Soc. Jpn. 82, 064005 (2013)

    Article  ADS  Google Scholar 

  20. Li, Z., Geng, X., Guan, L.: Algebro-geometric constructions of the Wadati–Konno–Ichikawa flows and applications. Math. Methods Appl. Sci. 39, 734–743 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Shimabukuro, Y.: Global solution of the Wadati–Konno–Ichikawa equation with small initial data. arXiv:1612.07579

  22. Liu, H.F., Shimabukuro, Y.: \(N\)-soliton formula and blowup result of the Wadati–Konno–Ichikawa equation. J. Phys. A 50, 315204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.S., Rao, J.G., Chen, Y., He, J.S.: Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: \(N\) simple poles and one higher-order pole. Phys. D 399, 173–185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ishimori, Y.: A relationship between the Ablowitz–Kaup–Newell–Segur and Wadati–Konno–Ichikawa schemes of the inverse scattering method. J. Phys. Soc. Jpn. 51, 3036–3041 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cheng, M.M., Geng, X.G., Wang, K.D.: Spectral analysis and long-time asymptotics for the potential Wadati–Konno–Ichikawa equation. J. Math. Anal. Appl. 501, 125170 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Manakov, S.V.: Nonlinear Fraunhofer diffraction. Sov. Phys. JETP 38, 693–696 (1974)

    ADS  Google Scholar 

  27. Zakharov, V.E., Manakov, S.V.: Asymptotic behavior of nonlinear wave systems integrated by the inverse scattering method. Sov. Phys. JETP 44, 106–112 (1976)

    ADS  Google Scholar 

  28. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: Long-time asymptotics for the short pulse equation. J. Differ. Equ. 265, 3439–3532 (2018)

    Article  MathSciNet  Google Scholar 

  30. Boutet de Monvel, A., Lenells, J., Shepelsky, D.: The focusing NLS equation with step-like oscillating background: scenarios of long-time asymptotics. Commun. Math. Phys. 383, 893–952 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Biondini, G., Li, S., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions in the presence of a discrete spectrum. Commun. Math. Phys. 382, 1495–1577 (2021)

    Article  ADS  MATH  Google Scholar 

  32. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the Spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chen S.Y.,Yan Z.Y.,Guo B.L.: Long-time asymptotics for the focusing Hirota equation with non-zero boundary conditions at infinity via Deift-Zhou approach. Math. Phys. Anal. Geom. 24, 17 (2021). https://doi.org/10.1007/s11040-021-09388-0

  34. Liu, N., Guo, B.L.: Long-time asymptotics for the Sasa–Satsuma equation via nonlinear steepest descent method. J. Math. Phys. 60, 011504 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Deift, P., Zhou, X.: Long-time asymptotics for integrable systems. Higher order theory. Commun. Math. Phys. 165(1), 175–191 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Deift, P., Zhou, X.: Long-Time Behavior of the Non-Focusing Nonlinear Schrödinger Equation, a Case Study, Lectures in Mathematical Sciences. Graduate School of Mathematical Sciences, University of Tokyo (1994)

  37. Deift, P., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 56(8), 1029–1077 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. McLaughlin, K.T.R., Miller, P.D.: The \({\bar{\partial }}\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying non-analytic weights. Int. Math. Res. Pap. 2006, 48673 (2006)

  39. McLaughlin, K.T.R., Miller, P.D.: The \({\bar{\partial }}\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Not. IMRN, 2008, 075 (2008)

  40. Dieng, M., McLaughlin, K.T.R.: Long-time Asymptotics for the NLS equation via dbar methods, arXiv:0805.2807

  41. Cuccagna, S., Jenkins, R.: On asymptotic stability of \(N\)-solitons of the defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 343, 921–969 (2016)

    Article  ADS  MATH  Google Scholar 

  42. Borghese, M., Jenkins, R., McLaughlin, K.T.R.: Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. I. H. Poincaré Anal. 35, 887–920 (2018)

    MATH  Google Scholar 

  43. Yang, Y.L., Fan, E.G.: Soliton resolution for the short-pluse equation. J. Differ. Equ. 280, 644–689 (2021)

    Article  ADS  MATH  Google Scholar 

  44. Yang, Y.L., Fan, E.G.: Soliton resolution for the three-wave resonant interaction equation. arXiv:2101.03512

  45. Dieng, M., McLaughlin, K.T.R., Miller, P.D.: Dispersive asymptotics for linear and integrable equations by the \({\bar{\partial }}\) steepest descent method. Fields Inst. Commun. 83, 253–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys. 363, 1003–1049 (2018)

    Article  ADS  MATH  Google Scholar 

  47. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Global well-posedness for the derivative nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 43(8), 1151–1195 (2018)

    Article  MATH  Google Scholar 

  48. Cheng, Q.Y., Fan, E.G.: Soliton resolution for the focusing Fokas–Lenells equation with weighted Sobolev initial data. arXiv:2010.08714

  49. Li, Z.Q., Tian, S.F., Yang, J.J.: Soliton resolution for a coupled generalized nonlinear Schrödinger equations with weighted Sobolev initial data. arXiv:2012.11928

  50. Yang, J.J., Tian, S.F., Li, Z.Q.: Soliton resolution for the Hirota equation with weighted Sobolev initial data. arXiv:2101.05942

  51. Yang, Y.L., Fan, E.G.: On asymptotic approximation of the modified Camassa–Holm equation in different space-time solitonic regions. arXiv:2101.02489

  52. Zhou, X.: \(L^{2}\)-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math. 51(7), 697–731 (1998)

    Article  Google Scholar 

  53. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: The short pulse equation by a Riemann–Hilbert approach. Lett. Math. Phys. 107, 1345–1373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: The short-wave model for the Camassa–Holm equation: a Riemann–Hilbert approach. Inverse Probl. 27, 105006 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Xu, J., Fan, E.G.: Long-time asymptotic behavior for the complex short pulse equation. J. Differ. Equ. 269, 10322–10349 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ablowitz, M.J., Prinari, B., Trubatch, A.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  57. Boutet de Monvel, A., Shepelsky, D.: Riemann–Hilbert approach for the Camassa–Holm equation on the line. C. R. Math. 343, 627–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Boutet de Monvel, A., Shepelsky, D.: Riemann-Hilbert problem in the inverse scattering for the Camassa–Holm equation on the line. Math. Sci. Res. Inst. Publ. 55, 53–75 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Its, A.: Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations. Dokl. Akad. Nauk SSSR 261(1), 14–18 (1981)

    MathSciNet  Google Scholar 

  60. Liu, J., Perry, P., Sulem, C.: Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data. Ann. I. H. Poincaré Anal. Non Linéaire 35, 217–265 (2018)

    Article  ADS  MATH  Google Scholar 

  61. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V.: NIST Digital Library of Mathematical Functions (2016). http://dlmf.nist.gov/

  62. Jenkins, R., McLaughlin, K.T.R.: Semiclassical limit of focusing NLS for a family of square barrier initial data. Commun. Pure Appl. Math. 67(2), 246–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referee for their valuable comments and suggestions. The author S.F. Tian would like to thank Professor Engui Fan for his continuous help. This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Fu Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Nikolai Kitanine.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Parabolic Cylinder Model Problem

Here, we describe the solution of parabolic cylinder model problem [59, 60]. Define the contours \(\Sigma ^{pc}=\cup _{j=1}^{4}\Sigma _{j}^{pc}\) where

$$\begin{aligned} \Sigma _{j}^{pc}=\left\{ \lambda \in {\mathbb {C}}|\arg \lambda =\frac{2j-1}{4}\pi \right\} . \end{aligned}$$
(A.1)

For \(r_{0}\in {\mathbb {C}}\), let \(\nu (r)=-\frac{1}{2\pi }\log (1+|r_{0}|^{2})\), consider the following parabolic cylinder model Riemann–Hilbert problem.

Riemann-Hilbert Problem 9.2

Find a matrix-valued function \(M^{(pc)}(\lambda )\) such that (Fig. 5)

$$\begin{aligned}&\bullet \quad M^{(pc)}(\lambda )~ \text {is analytic in}~ {\mathbb {C}}{\setminus }\Sigma ^{pc}, \end{aligned}$$
(A.2)
$$\begin{aligned}&\bullet \quad M_{+}^{(pc)}(\lambda )=M_{-}^{(pc)}(\lambda )V^{(pc)}(\lambda ),\quad \lambda \in \Sigma ^{pc}, \end{aligned}$$
(A.3)
$$\begin{aligned}&\bullet \quad M^{(pc)}(\lambda )={\mathbb {I}}+\frac{M_{1}}{\lambda }+O(\lambda ^{2}),\quad \lambda \rightarrow \infty , \end{aligned}$$
(A.4)

where

$$\begin{aligned} V^{(pc)}(\lambda )=\left\{ \begin{aligned} \lambda ^{-i\nu {\hat{\sigma }}_{3}}e^{\frac{i\lambda ^{2}}{4} {\hat{\sigma }}_{3}}\left( \begin{array}{cc} 1 &{}\quad r_{0} \\ 0 &{}\quad 1 \\ \end{array} \right) ,\quad \lambda \in \Sigma _{1}^{pc},\\ \lambda ^{-i\nu {\hat{\sigma }}_{3}}e^{\frac{i\lambda ^{2}}{4} {\hat{\sigma }}_{3}}\left( \begin{array}{cc} 1 &{}\quad 0 \\ \frac{{\bar{r}}_{0}}{1+|r_{0}|^{2}} &{}\quad 1 \\ \end{array} \right) ,\quad \lambda \in \Sigma _{2}^{pc},\\ \lambda ^{-i\nu {\hat{\sigma }}_{3}}e^{\frac{i\lambda ^{2}}{4} {\hat{\sigma }}_{3}}\left( \begin{array}{cc} 1 &{}\quad \frac{r_{0}}{1+|r_{0}|^{2}} \\ 0 &{}\quad 1 \\ \end{array} \right) ,\quad \lambda \in \Sigma _{3}^{pc},\\ \lambda ^{-i\nu {\hat{\sigma }}_{3}}e^{\frac{i\lambda ^{2}}{4} {\hat{\sigma }}_{3}}\left( \begin{array}{cc} 1 &{}\quad 0 \\ {\bar{r}}_{0} &{}\quad 1 \\ \end{array} \right) ,\quad \lambda \in \Sigma _{4}^{pc}. \end{aligned}\right. \end{aligned}$$
(A.5)
Fig. 5
figure 5

Jump matrix \(V^{(pc)}\)

We have the parabolic cylinder equation expressed as [61]

$$\begin{aligned} \left( \frac{\partial ^{2}}{\partial z^{2}}+\left( \frac{1}{2}-\frac{z^{2}}{2}+a\right) \right) D_{a}=0. \end{aligned}$$

As shown in the literature [28, 62], we obtain the explicit solution \(M^{(pc)}(\lambda , r_{0})\):

$$\begin{aligned} M^{(pc)}(\lambda , r_{0})=\Phi (\lambda , r_{0}){\mathcal {P}}(\lambda , r_{0})e^{\frac{i}{4}\lambda ^{2}\sigma _{3}}\lambda ^{-i\nu \sigma _{3}}, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {P}}(\lambda , r_{0})=\left\{ \begin{aligned}&\left( \begin{array}{cc} 1 &{}\quad -r_{0} \\ 0 &{}\quad 1 \\ \end{array} \right) ,\quad&\lambda \in \Omega _{1},\\&\left( \begin{array}{cc} 1 &{}\quad 0\\ -\frac{{\bar{r}}_{0}}{1+|r_{0}|^{2}} &{}\quad 1 \\ \end{array} \right) ,\quad&\lambda \in \Omega _{3},\\&\left( \begin{array}{cc} 1 &{}\quad \frac{r_{0}}{1+|r_{0}|^{2}}\\ 0 &{}\quad 1 \\ \end{array} \right) ,\quad&\lambda \in \Omega _{4},\\&\left( \begin{array}{cc} 1 &{}\quad 0 \\ {\bar{r}}_{0} &{}\quad 1 \\ \end{array} \right) ,\quad&\lambda \in \Omega _{6},\\&~~~I ,\quad&\lambda \in \Omega _{2}\cup \Omega _{5}, \end{aligned}\right. \end{aligned}$$

and

$$\begin{aligned}&\Phi (\lambda , r_{0})\\&=\left\{ \begin{aligned} \left( \begin{array}{cc} e^{-\frac{3\pi \nu }{4}}D_{i\nu }\left( e^{-\frac{3i\pi }{4}}\lambda \right) &{}\quad i\beta _{12}e^{-\frac{3\pi (\nu +i)}{4}}D_{i\nu -1}\left( e^{-\frac{3i\pi }{4}}\lambda \right) \\ -i\beta _{21}e^{-\frac{\pi }{4}(\nu -i)}D_{-i\nu -1}\left( e^{-\frac{i\pi }{4}}\lambda \right) &{}\quad e^{\frac{\pi \nu }{4}}D_{-i\nu }\left( e^{-\frac{i\pi }{4}}\lambda \right) \\ \end{array} \right) ,\quad \lambda \in {\mathbb {C}}^{+},\\ \left( \begin{array}{cc} e^{\frac{\pi \nu }{4}}D_{i\nu }\left( e^{\frac{i\pi }{4}}\lambda \right) &{}\quad i\beta _{12}e^{\frac{\pi }{4}(\nu +i)}D_{i\nu -1}\left( e^{\frac{i\pi }{4}}\lambda \right) \\ -i\beta _{21}e^{-\frac{3\pi (\nu -i)}{4}}D_{-i\nu -1}\left( e^{\frac{3i\pi }{4}}\lambda \right) &{}\quad e^{-\frac{3\pi \nu }{4}}D_{-i\nu }\left( e^{\frac{3i\pi }{4}}\lambda \right) \\ \end{array} \right) ,\quad \lambda \in {\mathbb {C}}^{-}, \end{aligned}\right. \end{aligned}$$

with

$$\begin{aligned}&\beta _{21}=\frac{\sqrt{2\pi }e^{i\pi /4}e^{-\pi \nu /2}}{r_0\Gamma (-i\nu )},\nonumber \\&\beta _{12}=\frac{-\sqrt{2\pi }e^{-i\pi /4}e^{-\pi \nu /2}}{\overline{r_0}\Gamma (i\nu )}=\frac{\nu }{\beta _{21}}. \end{aligned}$$
(A.6)

Then, it is not hard to obtain the asymptotic behavior of the solution by using the well-known asymptotic behavior of \(D_{a}(z)\),

$$\begin{aligned} M^{(pc)}(r_0,\lambda )={\mathbb {I}}+\frac{M_1^{(pc)}}{i\lambda }+O(\lambda ^{-2}), \end{aligned}$$
(A.7)

where

$$\begin{aligned} M_1^{(pc)}=\begin{pmatrix}0&{}-\beta _{12}\\ \beta _{21}&{}0\end{pmatrix}. \end{aligned}$$
(A.8)

Appendix B: Meromorphic Solutions of the WKI Riemann–Hilbert Problem

Here, we study RHP 3.5 for the reflectionless case, i.e., \(r(z)=0\). Under this condition, we know that M(ytz) has no jump across the real axis. Then, for given scattering data \(\sigma _{d}=\{(z_{k}, c_{k}), z_{k}\in {\mathcal {Z}}\}^{N}_{k=1}\) satisfying \(z_{k}\ne z_{j}\) for \(k\ne j\), we obtain the following Riemann–Hilbert problem from RHP 3.5.

Riemann–Hilbert Problem B.1 Find a matrix value function \(M(y,t;z|\sigma _{d})\) satisfying

  • \(M(y,t;z|\sigma _{d})\) is analytic in \({\mathbb {C}}{\setminus }({\mathcal {Z}}\bigcup \bar{{\mathcal {Z}}})\);

  • \(M(y,t;z|\sigma _{d})={\mathbb {I}}+O(z^{-1})\),    \(z\rightarrow \infty \);

  • \(M(y,t;z|\sigma _{d})\) satisfies the following residue conditions at simple poles \(z_{k}\in {\mathcal {Z}}\) and \({\bar{z}}_{k}\in \bar{{\mathcal {Z}}}\)

    $$\begin{aligned} \begin{aligned}&\mathop {Res}_{z=z_{k}}M(y,t;z|\sigma _{d})=\lim _{z\rightarrow z_{k}}M(y,t;z|\sigma _{d})N_{k},\\&\mathop {Res}_{z={\bar{z}}_{k}}M(y,t;z|\sigma _{d})=\lim _{z\rightarrow {\bar{z}}_{k}}M(y,t;z|\sigma _{d})\sigma _{2}{\bar{N}}_{k}\sigma _{2}, \end{aligned} \end{aligned}$$
    (B.1)

    where

    $$\begin{aligned}&\displaystyle N_{k}=\left( \begin{aligned} \begin{array}{cc} 0 &{}\quad \gamma _{k}(x,t) \\ 0 &{}\quad 0 \end{array} \end{aligned}\right) ,~ \gamma _{k}(x,t)=c_{k}e^{-2it\theta (z_{k})}, \end{aligned}$$
    (B.2)
    $$\begin{aligned}&\displaystyle \theta (z_{k})=2z_{k}^{2}+\frac{y}{t}z_{k}. \end{aligned}$$
    (B.3)

Then, based on the Liouville’s theorem, the uniqueness of the solution is a direct result. Referring to the symmetry shown in Proposition 2.4, we obtain \(M(y,t;z|\sigma _{d})=-\sigma _{2} {\bar{M}}(y,t;{\bar{z}}|\sigma _{d})\sigma _{2}\), from which we can derive the following expansion, i.e.,

$$\begin{aligned} M(y,t;z|\sigma _{d})={\mathbb {I}}+\sum _{k=1}^{N}\left[ \frac{1}{z-z_{k}}\left( \begin{aligned} \begin{array}{cc} 0 &{}\quad \zeta _{k}(x,t) \\ 0 &{}\quad \eta _{k}(x,t) \end{array} \end{aligned}\right) +\frac{1}{z-\overline{z_{k}}}\left( \begin{aligned} \begin{array}{cc} \overline{\eta _{k}}(x,t) &{}\quad 0 \\ -\overline{\zeta _{k}}(x,t) &{}\quad 0 \end{array} \end{aligned}\right) \right] , \end{aligned}$$
(B.4)

where \(\zeta _{k}(x,t)\) and \(\eta _{k}(x,t)\) are unknown coefficients to be determined. Next, in the similar way shown in [42], we obtain the following proposition.

Proposition B.2

For the given scattering data \(\sigma _{d}=\{(z_{k}, c_{k}), z_{k}\in {\mathcal {Z}}\}^{N}_{k=1}\) such that \(z_{k}\ne z_{j}\) for \(k\ne j\), the solution of RHP B.1 is unique for each \((x,t)\in {\mathbb {R}}^{2}\). Moreover, the solution satisfies

$$\begin{aligned} \Vert M(y,t;z|\sigma _{d})\Vert _{L^{\infty }({\mathbb {C}}{\setminus }({\mathcal {Z}}\cup \bar{{\mathcal {Z}}}))}\lesssim 1. \end{aligned}$$
(B.5)

1.1 B.1 Renormalization of the RHP for Reflectionless Case

For the reflectionless case, following from the trace formula (5.5), we obtain

$$\begin{aligned} s_{22}(z)=\prod _{k=1}^{N}\left( \frac{z-z_{k}}{z-{\bar{z}}_{k}}\right) . \end{aligned}$$
(B.6)

Following from the ideas in [42], we define \(\vartriangle \subseteq \{1,2,\ldots ,N\}\), \(\bigtriangledown \subseteq \{1,2,\ldots ,N\}{\setminus }\vartriangle \), and

$$\begin{aligned}&s_{22,\vartriangle }=\prod _{k\in \vartriangle }\frac{z-z_{k}}{z-\overline{z_{k}}},\nonumber \\&s_{22,\triangledown }=\frac{s_{11}}{s_{11,\vartriangle }}= \prod _{k\in \triangledown }\frac{z-z_{k}}{z-\overline{z_{k}}}. \end{aligned}$$
(B.7)

Then, the normalized transformation

$$\begin{aligned} M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })=M(y,t;z|\sigma _{d})s_{22,\vartriangle }(z)^{-\sigma _{3}}, \end{aligned}$$
(B.8)

splits the poles between the columns of \(M(y,t;z|\sigma _{d})\) based on the selection of different \(\vartriangle \). Then, we can get the modified Riemann–Hilbert problem.

Riemann–Hilbert Problem B.3 Given scattering data \(\sigma _{d}=\{(z_{k}, c_{k})\}^{N}_{k=1}\) and \(\vartriangle \subseteq \{1,2, \cdots ,N\}\), find a matrix value function \(M^{\vartriangle }\) satisfying

  • \(M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })\) is analytic in \({\mathbb {C}}{\setminus }({\mathcal {Z}}\bigcup \bar{{\mathcal {Z}}})\);

  • \(M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })={\mathbb {I}}+O(z^{-1})\),    \(z\rightarrow \infty \);

  • \(M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })\) satisfies the following residue conditions at simple poles \(z_{k}\in {\mathcal {Z}}\) and \(\bar{z_{k}}\in \bar{{\mathcal {Z}}}\)

    $$\begin{aligned} \begin{aligned}&\mathop {Res}_{z=z_{k}}M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })=\mathop {lim}_{z\rightarrow z_{k}}M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })N^{\vartriangle }_{k},\\&\mathop {Res}_{z={\bar{z}}_{k}}M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })=\mathop {lim}_{z\rightarrow {\bar{z}}_{k}}M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })\sigma _{2}\overline{N^{\vartriangle }_{k}}\sigma _{2}, \end{aligned} \end{aligned}$$
    (B.9)

    where

    $$\begin{aligned} N_{k}^{\vartriangle }&=\left\{ \begin{aligned} \left( \begin{array}{cc} 0 &{}\quad \gamma _{k}^{\vartriangle } \\ 0 &{}\quad 0 \\ \end{array} \right) ,\quad k\in \triangledown ,\\ \left( \begin{array}{cc} 0 &{}\quad 0 \\ \gamma _{k}^{\vartriangle } &{}\quad 0 \\ \end{array} \right) ,\quad k\in \vartriangle , \end{aligned}\right. ~~\gamma _{k}^{\vartriangle }=\left\{ \begin{aligned}&c_{k}(s_{22,\vartriangle }(z_{k}))^{2}e^{-2it\theta (z_{k})}\quad k\in \triangledown ,\\&c_{k}^{-1}(s_{22,\vartriangle }^{'}(z_{k}))^{-2}e^{2it\theta (z_{k})}\quad k\in \vartriangle , \end{aligned}\right. \nonumber \\&\theta (z_{k})=2z_{k}^{2}+\frac{y}{t}z_{k}. \end{aligned}$$
    (B.10)

Because \(M^{\vartriangle }(y,t;z|\sigma _{d}^{\vartriangle })\) is directly transformed from \(M(y,t;z|\sigma _{d})\), it is obvious to find out that RHP B.3 has a unique solution.

For given scattering data \(\sigma ^{\triangle }_{d}\), using \(q_{sol}(y,t)=q_{sol}(y,t;\sigma ^{\triangle }_{d})\) to denote the unique N-soliton solution of the WKI equation (1.3), by applying (B.8), we can derive that

$$\begin{aligned} q_{sol}(y,t;\sigma ^{\triangle }_{d})=e^{2d}\lim _{z\rightarrow 0}\frac{\partial }{\partial y}\frac{\left( M(0;y,t|\sigma ^{\triangle }_{d})^{-1}M(z;y,t|\sigma ^{\triangle }_{d})\right) _{12}}{z}. \end{aligned}$$
(B.11)

This indicates that each normalization encodes \(q_{sol}(y,t)\) in the same way. When the scattering coefficient \(s_{22}(z)\) only possesses one zero point \(z_{1}\), the one soliton solution can be derived. Taking \(z_{1}=\xi +i\eta \), \(\xi >0\), \(\eta >0\), the one soliton solution of the WKI equation (1.3) is derived as [23]

$$\begin{aligned} q(x,t)=q(y(x,t),t)&=\frac{-2\eta (\xi -\eta i)[\xi \cosh (2\phi )+i\eta \sinh (2\varphi )]e^{2d-2i\varphi }}{\eta [(\xi ^{2}+\eta ^{2})\cosh ^{2}(2\phi )-2\eta ^{2}]},\\ x&=y-\frac{2\eta }{\eta ^{2}(1+e^{4\phi })}, \end{aligned}$$

where \(\varphi =\varphi (y,t)\) and \(\phi =\phi (y,t)\) are, respectively, defined as

$$\begin{aligned} \varphi (y,t)=\xi y+2(\xi ^{2}-\eta ^{2})t-\frac{1}{2}\arg (c_{1}),\\ \phi (y,t)=4\xi \eta t-\eta y-\frac{1}{2}\log (|c_{1}|). \end{aligned}$$

The constant \(c_{1}\) is the norming constant and d is defined in (2.13). However, when the scattering coefficient \(s_{22}(z)\) possesses multiple zero point, the exact formula of the solution is too complicated to derive, we do not give them here. In fact, after the elastic collisions, the N-soliton asymptotically separate into N single-soliton solutions as \(t\rightarrow \infty \). Of course, the non-generic case, for example, two points of scattering data lie on a vertical line, is an exception. Next, we study the asymptotic behavior of the soliton solutions.

1.2 B.2 Long-Time Behavior of Soliton Solutions

Define a distance

$$\begin{aligned} \mu ({\mathcal {I}})=\min _{z_{k}\in {\mathcal {Z}}{\setminus } {\mathcal {Z}}({\mathcal {I}})}\{Im(z_{k})dist(Rez_{k},I)\}, \end{aligned}$$
(B.12)

and a space-time cone

$$\begin{aligned} S(y_{1},y_{2},v_{1},v_{2})=\{(y,t),y=y_{0}+vt ~with ~y_{0}\in [y_{1},y_{2}],v\in [v_{1},v_{2}]\}, \end{aligned}$$
(B.13)

where \(v_{1}\le v_{2}\in {\mathbb {R}}\) are given velocities (Fig. 6).

Fig. 6
figure 6

Space-time \(S(y_{1},y_{2},v_{1},v_{2})\)

Proposition B.4

Given scattering data \(\sigma _{d}^{\vartriangle _{z_{0}}^{-}}=\{(z_{k},c_{k})\},\) fix \(y_{1},y_{2},v_{1},v_{2}\in {\mathbb {R}}\) and \(y_{1}<y_{2}\), \(v_{1}<v_{2}\). Let \({\mathcal {I}}=\left[ -\frac{v_{2}}{4},-\frac{v_{1}}{4}\right] \). Then as \(t\rightarrow \infty \) and \((y,t)\in S(y_{1},y_{2},v_{1},v_{2})\), we have

$$\begin{aligned} M^{\vartriangle _{z_{0}}^{\mp }}(z|\sigma _{d}^{\vartriangle _{z_{0}}^{\pm }})= ({\mathbb {I}}+O(e^{-8\mu |t|}))M^{\vartriangle ^{\mp }_{{\mathcal {I}}}} (z|{\hat{\sigma }}_{d}({\mathcal {I}})), \end{aligned}$$
(B.14)

where \(M^{\vartriangle ^{\mp }_{{\mathcal {I}}}} (z|{\hat{\sigma }}_{d}({\mathcal {I}}))\) is \(N({\mathcal {I}})=|{\mathcal {Z}}({\mathcal {I}})|\)-soliton solutions corresponding to scattering data (Fig. 7)

$$\begin{aligned}&{\hat{\sigma }}_{d}({\mathcal {I}})=\{(z_{k},c_{k}({\mathcal {I}})),z_{k}\in {\mathcal {Z}}({\mathcal {I}})\},\nonumber \\&c_{k}({\mathcal {I}})=c_{k}\prod _{z_{j}\in {\mathcal {Z}}{\setminus } {\mathcal {Z}}({\mathcal {I}})}\left( \frac{z_{k}-z_{j}}{z_{k}-{\bar{z}}_{j}}\right) ^{2}. \end{aligned}$$
(B.15)
Fig. 7
figure 7

For fixed \(v_{1}<v_{2}\), \({\mathcal {I}}=\left[ -\frac{v_{2}}{4},-\frac{v_{1}}{4}\right] \)

Proof

We first consider the case of \(M^{\vartriangle _{z_{0}}^{-}}(z|\sigma _{d}^{\vartriangle _{z_{0}}^{-}})\). Define

$$\begin{aligned}&\triangle ^{-}({\mathcal {I}})=\{k: Rez_{k}<-\frac{v_{2}}{4}\},\\&\triangle ^{+}({\mathcal {I}})=\{k: Rez_{k}>-\frac{v_{1}}{4}\}. \end{aligned}$$

Then, if we choose \(\vartriangle =\vartriangle ^{-}({\mathcal {I}})\) in RHP B.3, it is easy to check that

$$\begin{aligned} \big |\big |N_{k}^{\vartriangle ^{-}({\mathcal {I}})}\big |\big |=\left\{ \begin{aligned}&o(1) \quad k\in {\mathcal {Z}}({\mathcal {I}}),\\&o(e^{-8\mu ({\mathcal {I}})|t|})\quad k\in {\mathcal {Z}}{\setminus }{\mathcal {Z}}({\mathcal {I}}), \end{aligned}\right. ~~t\rightarrow -\infty , \end{aligned}$$
(B.16)

which implies that the residues with \(z_{k}\in {\mathcal {Z}}{\setminus }{\mathcal {Z}}({\mathcal {I}})\) have little contribution to the solution \(M^{\vartriangle _{z_{0}}^{\pm }}\).

For each discrete spectrum point \(z_{k}\in {\mathcal {Z}}{\setminus } {\mathcal {Z}}({\mathcal {I}})\), we make a small disk \(D_{k}\) corresponding to each spectrum point \(z_{k}\). And the radius of the disk \(D_{k}\) is sufficiently small to guarantee that they are non-overlapping. Denote \(\partial D_{k}\) as the boundary of \(D_{k}\). Then, we introduce that

$$\begin{aligned} \Xi (z)=\left\{ \begin{aligned}&{\mathbb {I}}-\frac{N_{k}^{\vartriangle ^{-}({\mathcal {I}})}}{z-z_{k}} \quad z\in D_{k},\\&{\mathbb {I}}-\frac{\sigma _{2} (\overline{N_{k}})^{\vartriangle ^{-}({\mathcal {I}})}\sigma _{2}}{z-{\bar{z}}_{k}} \quad z\in \overline{D_{k}},\\&{\mathbb {I}},\quad elsewhere. \end{aligned}\right. \end{aligned}$$
(B.17)

By introducing a transformation that \({\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z)=M^{\vartriangle _{z_{0}}^{-}}(z)\Xi (z)\), we can derive that \({\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z)\) has a new jump in \(\partial D_{k}\). Then, \({\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z)\) satisfied the following jump relationship

$$\begin{aligned} {\hat{M}}^{\vartriangle _{z_{0}}^{-}}_{+}(z)={\hat{M}}^{\vartriangle _{z_{0}}^{-}}_{-}(z){\hat{V}},~~ z\in \partial D_{k}\cup \partial \overline{D_{k}}. \end{aligned}$$
(B.18)

By using the estimate (B.16), the jump matrix \({\hat{V}}\) satisfies that

$$\begin{aligned} ||{\hat{V}}-I||=O(e^{-8\mu ({\mathcal {I}})|t|}), ~~z\in \partial D_{k}\cup \partial \overline{D_{k}},~~ t\rightarrow -\infty . \end{aligned}$$
(B.19)

Observing a fact that \({\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z|\sigma _{d})\) and \(M^{\vartriangle ^{-}_{{\mathcal {I}}}}(z|{\hat{\sigma }}_{d}({\mathcal {I}}))\) possess the same poles and residue conditions. Therefore, we can show that

$$\begin{aligned} {\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z|\sigma _{d}) [M^{\vartriangle ^{-}_{{\mathcal {I}}}}(z|{\hat{\sigma }}_{d}({\mathcal {I}}))]^{-1}\triangleq \varepsilon (z) \end{aligned}$$
(B.20)

has no poles. And, its jumps across the \(\partial D_{k}\cup \partial {\bar{D}}_{k}\) satisfy the same estimates with (B.19). Then, with the application of the theory of small-norm Riemann–Hilbert problems, one can easily derive that

$$\begin{aligned} \varepsilon (z)={\mathbb {I}}+O(e^{-8\mu ({\mathcal {I}})|t|}), ~~t\rightarrow \infty , \end{aligned}$$

which together with \({\hat{M}}^{\vartriangle _{z_{0}}^{-}}(z)=M^{\vartriangle _{z_{0}}^{-}}(z)\Xi (z)\) gives the formula (B.14). The other case of \(M^{\vartriangle _{z_{0}}^{+}}(z|\sigma _{d}^{\vartriangle _{z_{0}}^{+}})\) can be proved similarly. \(\square \)

Appendix C: Detailed Calculations for the Pure \({\bar{\partial }}\)-Problem

Proposition C.1

For large t, there exist constants \(c_{j}(j=1,2,3)\) such that \(I_{j}(j=1,2,3)\) defined in (8.7) and (8.8) possess the following estimate

$$\begin{aligned} I_{j}\le c_{j}t^{-\frac{1}{4}},~~ j=1,2,3. \end{aligned}$$
(C.1)

Proof

Let \(s=p+iq\) and \(z=\xi +i\eta \). Considering the fact that

$$\begin{aligned} \Big |\Big |\frac{1}{s-z}\Big |\Big |_{L^{2}}(q+z_{0})=\left( \int _{q+z_{0}}^{\infty }\frac{1}{|s-z|^{2}}\mathrm{d}p\right) ^{\frac{1}{2}} \le \frac{\pi }{q-\eta }, \end{aligned}$$

we can derive that

$$\begin{aligned} \begin{aligned} |I_{1}|&\le \int _{0}^{+\infty }\int _{q+z_{0}}^{+\infty } \frac{|{\bar{\partial }}\chi _{{\mathcal {Z}}}(s)|e^{-4|t|q(p-z_{0})}}{|s-z|}\mathrm{d}p\mathrm{d}q\\&\le \int _{0}^{+\infty }e^{-4|t|q^{2}}\big |\big |{\bar{\partial }}\chi _{{\mathcal {Z}}}(s)\big |\big |_{L^{2}(q+z_{0})} \Big |\Big |\frac{1}{s-z}\Big |\Big |_{L^{2}(q+z_{0})}\mathrm{d}q \\&\le c_{1}\int _{0}^{+\infty }\frac{e^{-4|t|q^{2}}}{\sqrt{|q-\eta |}}\mathrm{d}q \le c_{1}|t|^{-\frac{1}{4}}. \end{aligned} \end{aligned}$$
(C.2)

Similarly, considering that \(r\in H^{1,1}({\mathbb {R}})\), we obtain the estimate

$$\begin{aligned} |I_{2}|\le \int _{0}^{+\infty }\int _{q+z_{0}}^{+\infty } \frac{|r'(p)|e^{-4|t|q^{2}}}{|s-z|}\mathrm{d}p\mathrm{d}q \le c_{2}|t|^{-\frac{1}{4}}. \end{aligned}$$
(C.3)

To obtain the estimate of \(I_{3}\), we consider the following \(L^{k}(k>2)\) norm

$$\begin{aligned} \bigg |\bigg |\frac{1}{\sqrt{|s-z_{0}|}}\bigg |\bigg |_{L^{k}} \le \left( \int _{q+z_{0}}^{+\infty } \frac{1}{|p-z_{0}+iq|^{\frac{k}{2}}}\mathrm{d}p\right) ^{\frac{1}{k}} \le cq^{\frac{1}{k}-\frac{1}{2}}. \end{aligned}$$
(C.4)

Similarly, we can derive that

$$\begin{aligned} \bigg |\bigg |\frac{1}{|s-z|}\bigg |\bigg |_{L^{k}}\le c|q-\eta |^{\frac{1}{k}-\frac{1}{2}}. \end{aligned}$$
(C.5)

By applying (C.4) and (C.5), it is not hard to check that

$$\begin{aligned} \begin{aligned} |I_{3}|&\le \int _{0}^{+\infty }\int _{q}^{+\infty } \frac{|z-z_{0}|^{-\frac{1}{2}}e^{-4|t|q(p-z_{0})}}{|s-z|}\mathrm{d}p\mathrm{d}q\\&\le \int _{0}^{+\infty }e^{-4|t|q^{2}}\bigg |\bigg |\frac{1}{\sqrt{|s-z_{0}|}}\bigg |\bigg |_{L^{k}} \bigg |\bigg |\frac{1}{|s-z|}\bigg |\bigg |_{L^{k}}\mathrm{d}q \le c_{3}t^{-\frac{1}{4}}. \end{aligned} \end{aligned}$$
(C.6)

Now, we complete the estimates of \(I_{j}(j=1,2,3)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZQ., Tian, SF. & Yang, JJ. Soliton Resolution for the Wadati–Konno–Ichikawa Equation with Weighted Sobolev Initial Data. Ann. Henri Poincaré 23, 2611–2655 (2022). https://doi.org/10.1007/s00023-021-01143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01143-z

Mathematics Subject Classification

Navigation