Skip to main content
Log in

Chiral Floquet Systems and Quantum Walks at Half-Period

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We classify chiral symmetric periodically driven quantum systems on a one-dimensional lattice. The driving process is local, can be continuous, or discrete in time, and we assume a gap condition for the corresponding Floquet operator. The analysis is in terms of the unitary operator at a half-period, the half-step operator. We give a complete classification of the connected classes of half-step operators in terms of five integer indices. On the basis of these indices, it can be decided whether the half-step operator can be obtained from a continuous Hamiltonian driving, or not. The half-step operator determines two Floquet operators, obtained by starting the driving at zero or at half-period, respectively. These are called timeframes and are chiral symmetric quantum walks. Conversely, we show under which conditions two chiral symmetric walks determine a common half-step operator. Moreover, we clarify the connection between the classification of half-step operators and the corresponding quantum walks. Within this theory, we prove bulk-edge correspondence and show that a second timeframe allows to distinguish between symmetry protected edge states at \(+\,1\) and \(-\,1\) which is not possible for a single timeframe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142–1161 (1997). arXiv:cond-mat/9602137

  2. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86, 195414 (2012). arXiv:1208.2143

  3. Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013). arXiv:1303.1199

  4. Asbóth, J.K., Tarasinski, B., Delplace, P.: Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B 90, 125143 (2014). arXiv:1405.1709

  5. Avron, J.E., Sadun, L.: Fredholm indices and the phase diagram of quantum hall systems. J. Math. Phys. 42(1), 1 (2001). arXiv:math-ph/0008040

  6. Cage, M.E., Klitzing, K., Chang, A., Duncan, F., Haldane, M., Laughlin, R., Pruisken, A., Thouless, D.: The Quantum Hall Effect. Graduate Texts in Contemporary Physics. Springer, New York (1990)

    Google Scholar 

  7. Cardano, F., Massa, F., Qassim, H., Karimi, E., Slussarenko, S., Paparo, D., de Lisio, C., Sciarrino, F., Santamato, E., Boyd, R.W., Marrucci, L.: Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1(2), (2015). arXiv:1407.5424

  8. Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10):106806 (2015). arXiv:1407.7747

  9. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: The topological classification of one-dimensional symmetric quantum walks. Ann. Inst. Poincaré A 19(2), 325–383 (2016). arXiv:1611.04439

  10. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Quantum walks: Schur functions meet symmetry protected topological phases. Commun. Math. Phys. (2019). arXiv:1903.07494

  11. Cedzich, C., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy invariants for translation invariant symmetric quantum walks on a chain. Quantum 2, 95 (2018). arXiv:1804.04520

  12. Cedzich, C., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A 21LT01 (2016). arXiv:1502.02592

  13. Delplace, P., Fruchart, M., Tauber, C.: Phase rotation symmetry and the topology of oriented scattering networks. Phys. Rev. B 95(20), 205413 (2017). arXiv:1612.05769

  14. Fruchart, M.: Complex classes of periodically driven topological lattice systems. Phys. Rev. B 93(11):115429 (2016). arXiv:1511.06755

  15. Gohberg, I., Goldberg, S., Kaashoeck, M.A.: Classes of Linear Operators, vols. I, II, volume 49/64. Operator Theory: Advances and Applications (1990/1993)

  16. Graf, G.M., Tauber, C.: Bulk-edge correspondence for two-dimensional Floquet topological insulators. Ann. Henri Poincaré 19, 709–741 (2018). arXiv:1707.09212

  17. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012). arXiv:0910.3675

  18. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). arXiv:1002.3895

  19. Kane, C.L., Mele, E.J.: \({\mathbb{Z}}_2\)-topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95(14):146802 (2005). arXiv:cond-mat/0506581

  20. Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005). arXiv:cond-mat/0411737

  21. Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009). arXiv:0907.1565

  22. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006). arXiv:cond-mat/0506438

  23. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). arXiv:0901.2686

  24. Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quant. Inf. Process. 11(5), 1107–1148 (2012). arXiv:1112.1882

  25. Kitagawa, T., Berg, E., Rudner, M., Demler, E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82(23), 235114 (2010). arXiv:1010.6126

  26. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010). arXiv:1003.1729

  27. Liu, X., Harper, F., Roy, R.: Chiral flow in one-dimensional Floquet topological insulators. Phys. Rev. B 98(16), 165116 (2018). arXiv:1806.00026

  28. Obuse, H., Asbóth, J.K., Nishimura, Y., Kawakami, N.: Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 92(4), 045424 (2015). arXiv:1505.03264

  29. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer, Berlin (2016). arXiv:1510.08744

  30. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011). arXiv:1008.2026

  31. Regensburger, A., Bersch, C., Hinrichs, B., Onishchukov, G., Schreiber, A., Silberhorn, C., Peschel, U.: Photon propagation in a discrete fiber network: An interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011). arXiv:1110.6115

  32. Roy, R., Harper, F.: Periodic table for Floquet topological insulators. Phys. Rev. B, 96(15):155118 (2017). arXiv:1603.06944

  33. Rudner, M.S., Lindner, N.H., Berg, E., Levin, M.: Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013). arXiv:1212.3324

  34. Sadel, C., Schulz-Baldes, H.: Topological boundary invariants for Floquet systems and quantum walks. Math. Phys. Anal. Geom. 20(4):22 (2017). arXiv:1708.01173

  35. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009). arXiv:0904.4214

  36. Stahl, C.: Interactive Mathematica notebook. http://qig.itp.uni-hannover.de/bulkedge (2015)

  37. Tarasinski, B., Asbóth, J.K., Dahlhaus, J.P.: Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89, 042327 (2014). arXiv:1401.2673

Download references

Acknowledgements

We thank the referees for helpful comments, which improved the readability of the manuscript. Moreover, we thank Janos Asbóth for inspiring discussions and for directing our interest to timeframed quantum walks in the first place. C. Cedzich acknowledges support by the projet PIA-GDN/QuantEx P163746-484124 and by DGE – Ministère de l’Industrie. T. Geib and R. F. Werner acknowledge support from the DFG through SFB 1227 DQ-mat. A. H. Werner thanks the VILLUM FONDEN for its support with a Villum Young Investigator Grant (Grant No. 25452) and its support via the QMATH Centre of Excellence (Grant No. 10059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cedzich.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cedzich, C., Geib, T., Werner, A.H. et al. Chiral Floquet Systems and Quantum Walks at Half-Period. Ann. Henri Poincaré 22, 375–413 (2021). https://doi.org/10.1007/s00023-020-00982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00982-6

Navigation