Skip to main content
Log in

Asymptotic Stability of Landau Solutions to Navier–Stokes System Under \(L^p\)-Perturbations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we show that Landau solutions to the Navier–Stokes system are asymptotically stable under \(L^3\)-perturbations. We give the local well-posedness of solutions to the perturbed system with the initial data in the \(L_{\sigma }^3\) space and the global well-posedness with the small initial data in the \(L_{\sigma }^3\) space, together with a study of the \(L^q\) decay for all \(q>3\). Moreover, we have also studied the local well-posedness, the global well-posedness and the stability in \(L^p\) spaces for \(3<p<\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss., vol. 343. Springer-Verlag, Berlin, Heidelberg (2011)

  2. Basson, A.: Solutions spatialement homog\(\grave{e}\)nes adapt\(\acute{e}\)es des \(\acute{e}\)quations de Navier–Stokes, Thesis. University of Evry (2006)

  3. Borchers, W., Miyakawa, T.: \(L^2\) decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Ration. Mech. Anal. 118, 273–295 (1992)

    Article  MATH  Google Scholar 

  4. Borchers, W., Miyakawa, T.: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Calderón, C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in \(L^p\). Trans. Am. Math. Soc. 318(1), 179–200 (1990)

    MATH  Google Scholar 

  7. Cannone, M.: Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris (1995)

    MATH  Google Scholar 

  8. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam 161–244 (2004)

  9. Cannone, M., Karch, G.: Smooth or singular solutions to the Navier–Stokes system? J. Differ. Equ. 197, 247–274 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Carlen, E.A., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier–Stokes equation. Duke Math. J. 81, 135–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escobedo, M., Zuazua, E.: Large time behavior for convection–diffusion equations in \({\mathbb{R} }^N\). J. Funct. Anal. 100(1), 119–161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)

    Book  Google Scholar 

  13. Hardy, G.H.: Note on a theorem of Hilbert. Math. Zeit. 6, 314–317 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hardy, G.H.: An inequality between integrals. Messenger Math. 54, 150–156 (1925)

    Google Scholar 

  15. Iwaniec, T., Martin, G.: Riesz transforms and related singular integrals. J. Reine Angew. Math. 473, 25–57 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Jia, H., Šverák, V.: Are the incompressible 3D Navier–Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268(12), 3734–3766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kajikiya, R., Miyakawa, T.: On \(L^2\) decay of weak solutions of the Navier–Stokes equations in \({\mathbb{R} }^n\). Math. Zeit. 192, 135–148 (1986)

    Article  MATH  Google Scholar 

  18. Karch, G., Pilarczyk, D.: Asymptotic stability of Landau solutions to Navier–Stokes system. Arch. Ration. Mech. Anal. 202, 115–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karch, G., Pilarczyk, D., Schonbek, M.E.: \(L^2\)-asymptotic stability of singular solutions to the Navier–Stokes system of equations in \({\mathbb{R} }^3\). J. Math. Pures Appl. 108(1), 14–40 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R} }^m\), with applications to weak solutions. Math. Zeit. 187, 471–480 (1984)

    Article  MATH  Google Scholar 

  21. Kikuchi, N., Seregin, G.: Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality, in Nonlinear equations and spectral theory Amer. Math. Soc. Transl. Ser. 2(220), 141–164 (2007)

    MATH  Google Scholar 

  22. Koch, G., Nadirashvili, N., Seregin, G., Šverák, V.: Liouville theorem for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kwon, H., Tsai, T.-P.: Global Navier–Stokes flows for non-decaying initial data with slowly decaying oscillation. Commun. Math. Phys. 375(3), 1665–1715 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Landau, L.D.: A new exact solution of the Navier–Stokes equations. C. R. (Dokl.) Acad. Sci. URSS 43, 286–288 (1944)

    MathSciNet  MATH  Google Scholar 

  25. Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, 431 (2002)

  26. Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  27. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

  28. Li, L., Li, Y.Y., Yan, X.: Homogeneous solutions of stationary Navier–Stokes equations with isolated singularities on the unit sphere I. One. singularity. Arch. Ration. Mech. Anal. 227, 1091–1163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, L., Li, Y.Y., Yan, X.: Homogeneous solutions of stationary Navier–Stokes equations with isolated singularities on the unit sphere II Classification of axisymmetric no-swirl solutions. J. Differ. Equ. 264, 6082–6108 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Li, L., Li, Y.Y., Yan, X.: Vanishing viscosity limit for homogeneous axisymmetric no-swirl solutions of stationary Navier–Stokes equations. J. Funct. Anal. 277, 3599–3652 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, L., Li, Y.Y., Yan, X.: Homogeneous solutions of stationary Navier–Stokes equations with isolated singularities on the unit sphere III Two singularities. Discrete Contin Dyn Syst. 39, 7163–7211 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Y.Y., Yan, X.: Asymptotic stability of homogeneous solutions of incompressible stationary Navier–Stokes equations. J. Differ. Equ. 297, 226–245 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Masuda, K.: Weak solutions of Navier–Stokes equations. Tohoku Math. J. 36, 623–646 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen, H.M., Squassina, M.: Logarithmic Sobolev inequality revisited. C. R. Math. 355(4), 447–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ogawa, T., Rajopadhye, S., Schonbek, M.: Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144, 325–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 44 (1983)

  37. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The three-dimensional Navier-Stokes equations, Cambridge Studies in Advanced Mathematics, vol. 157. Cambridge University Press, Cambridge, Classical theory (2016)

  38. Schonbek, M.E.: Decay of solutions to parabolic conservation laws. Commun. Partial Differ. Equ. 7, 449–473 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    Article  MATH  Google Scholar 

  40. Seregin, G., Šverák, V.: On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large \(L_3\)-initial data. Nonlinear Anal. 154, 269–296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Slezkin, N.A.: On an integrability case of full differential equations of the motion of a viscous fluid. In: Uchen. Zapiski Moskov. Gosud. Universiteta, vol. 2, Gosud. Tehniko-Teoret. Izdat., Moskva/Leningrad, 89–90 (1934)

  42. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 43 (1993)

  43. Šverák, V.: On Landau’s solutions of the Navier–Stokes equations, Problems in mathematical analysis, No. 61, J. Math. Sci. (NY), 179(1), 208–228 (2011)

  44. Swanson, C.: The best Sobolev constant. Appl. Anal. 47(4), 227–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984th edn. AMS/Chelsea Publishing, Providence (2001)

    Google Scholar 

  46. Tian, G., Xin, Z.P.: One-point singular solutions to the Navier–Stokes equations. Topol. Methods Nonlinear Anal. 11, 135–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tsai, T.-P.: Lectures on Navier–Stokes Equations. American Mathematical Society, Providence, RI, vol. 192 (2018)

  48. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations in \({\mathbb{R} }^n\). J. Lond. Math. Soc. 35, 303–313 (1987)

    Article  MATH  Google Scholar 

  49. Zhang, J.J., Zhang, T.: Local well-posedness of perturbed Navier—Stokes system around Landau solutions. Electron. Res. Arch. 29(4), 2719–2739 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first named author is partially supported by NSF Grant DMS-1501004 and DMS-2000261. The work of the third named author is partially supported by the NSFC Grant 11931010. We sincerely thank the anonymous reviewers for their constructive revision suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2.6

Set

$$\begin{aligned} \begin{aligned} II&= -r(t)^{2} \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} w_i\partial _j (w_iw_j)\textrm{d}x,\\ III&= -r(t)^{2} \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} w_i\partial _j (w_iv_j)\textrm{d}x,\\ IV&= -r(t)^{2} \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} w_i\partial _j (v_iw_j)\textrm{d}x,\\ V&= -r(t)^{2} \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2}w_i\partial _i\pi \textrm{d}x. \end{aligned} \end{aligned}$$
(8.1)

Thanks to integration by parts, Hölder’s inequality and Sobolev embedding \({\dot{H}}^{1}({\mathbb {R}}^{3})\hookrightarrow L^6({\mathbb {R}}^{3})\) (the best constant can be seen in [44]), we have

$$\begin{aligned} II= & {} -\frac{r(t)^{2} }{2}\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} w_j\partial _j|w|^2\textrm{d}x\nonumber \\= & {} \frac{r(t)^{2} }{2}\int _{{\mathbb {R}}^{3}} \partial _j(|w(\cdot ,t)|^{r(t)-2}) w_j|w|^2\textrm{d}x\nonumber \\\le & {} r(t)(r(t)-2)\int _{{\mathbb {R}}^{3}} \left| \nabla (|w(\cdot ,t)|^{\frac{r(t)}{2}})\right| |w|^{\frac{r(t)}{2}}|w|\textrm{d}x\nonumber \\\le & {} r(t)(r(t)-2)\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}} \left\| |w(t)|^{\frac{r(t)}{2}}\right\| _{L^{6}}\Vert w(t)\Vert _{L^{3}}\nonumber \\\le & {} r(t)(r(t)-2)\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}^{2}\Vert w(t)\Vert _{L^{3}}. \end{aligned}$$
(8.2)

Combining (1.13) with \(\Vert w_0\Vert _{L^3}\le \varepsilon _0,\) there holds

$$\begin{aligned} \begin{aligned} II\le r(t)(r(t)-2)C\varepsilon _0 \left\| \nabla (|w(t)|^{\frac{r(t)}{2}})\right\| ^2_{L^2}. \end{aligned} \end{aligned}$$
(8.3)

According to Hölder’s inequality, the Hardy inequality in Lemmas 2.2 and 2.3, we deduce

$$\begin{aligned} II= & {} \frac{r(t)^{2}}{2} \int _{{\mathbb {R}}^{3}} \partial _j(|w(\cdot ,t)|^{r(t)-2} )|w|^2v_j\textrm{d}x\nonumber \\= & {} r(t)(r(t)-2)\int _{{\mathbb {R}}^{3}} v_c\cdot \nabla (|w(\cdot ,t)|^{\frac{r(t)}{2}})|w(\cdot ,t)|^{\frac{r(t)}{2}}\textrm{d}x\nonumber \\\le & {} r(t)(r(t)-2)\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}\left\| \frac{|w(t)|^{\frac{r(t)}{2}}}{|x|}\right\| _{L^{2}}\left\| |x| v_{c}\right\| _{L^{\infty }}\nonumber \\\le & {} 2 r(t)(r(t)-2) K_{c}\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}^{2}. \end{aligned}$$
(8.4)

For the term II, using integration by parts, we have

$$\begin{aligned} IV= & {} -r(t)^{2} \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} w_i\partial _j (v_iw_j)\textrm{d}x\\= & {} r(t)^{2}\int _{{\mathbb {R}}^{3}} \partial _j (|w(\cdot ,t)|^{r(t)-2}) w_iv_iw_j\textrm{d}x + r(t)^{2}\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} \partial _jw_i v_iw_j\textrm{d}x. \end{aligned}$$

The estimate of the first part is similar to (8.4). We have

$$\begin{aligned} r(t)^{2}\int _{{\mathbb {R}}^{3}} \partial _j (|w(\cdot ,t)|^{r(t)-2}) w_iv_iw_j\textrm{d}x \le 4 r(t)(r(t)-2) K_{c}\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}^{2}. \end{aligned}$$

By Lemma 2.2, Cauchy inequality and the Hardy inequality, we can estimate the second part as follows

$$\begin{aligned}{} & {} r(t)^{2}\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} \partial _jw_i v_iw_j\textrm{d}x\\{} & {} \quad \le r(t)^{2}\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} |\partial _jw_i | ||x|v_i|\frac{|w_j|}{|x|}\textrm{d}x\\{} & {} \quad \le r(t)^{2}K_c\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} |\partial _jw_i | \frac{|w_j|}{|x|}\textrm{d}x\\{} & {} \quad \le \frac{r(t)^{2}}{2} K_c\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} |\nabla w(\cdot ,t)|^{2} dx+ \frac{r(t)^{2}}{2} K_c \int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} \frac{|w(\cdot ,t)|^{2}}{|x|^2} dx\\{} & {} \quad \le \frac{r(t)^{2}}{2} K_c\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} |\nabla w(\cdot ,t)|^{2} dx+ 2r(t)^{2} K_c\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}^{2}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \begin{aligned} IV\le&\frac{r(t)^{2}}{2} K_c\int _{{\mathbb {R}}^{3}} |w(\cdot ,t)|^{r(t)-2} |\nabla w(\cdot ,t)|^{2} dx\\&+ (4 r(t)(r(t)-2)+2r(t)^{2}) K_c\left\| \nabla \left( |w(t)|^{\frac{r(t)}{2}}\right) \right\| _{L^{2}}^{2}. \end{aligned} \end{aligned}$$
(8.5)

Note that the pressure \(\pi =-\frac{\partial _i\partial _j}{\Delta }(w_iw_j+v_iw_j+w_iv_j )\), using integration by parts, we obtain

$$\begin{aligned} V= & {} r(t)^{2} \int _{{\mathbb {R}}^{3}} \partial _i(|w(\cdot ,t)|^{r(t)-2})w_i\pi \textrm{d}x\nonumber \\= & {} r(t)^{2} \int _{{\mathbb {R}}^{3}} \partial _i(|w(\cdot ,t)|^{r(t)-2})w_i\left( -\frac{\partial _i\partial _j}{\Delta }(v_iw_j+w_iv_j+w_iw_j)\right) \textrm{d}x. \end{aligned}$$
(8.6)

This term is more complex to deal with, we will estimate it more carefully. Set

$$\begin{aligned} V_1= r(t)^{2} \int _{{\mathbb {R}}^{3}} \partial _i(|w(\cdot ,t)|^{r(t)-2})w_i\left( -\frac{\partial _i\partial _j}{\Delta }(v_iw_j+w_iv_j)\right) \textrm{d}x, \end{aligned}$$

and

$$\begin{aligned} V_2= r(t)^{2} \int _{{\mathbb {R}}^{3}} \partial _i(|w(\cdot ,t)|^{r(t)-2})w_i\left( -\frac{\partial _i\partial _j}{\Delta }w_iw_j\right) \textrm{d}x. \end{aligned}$$

According to [12], there holds \(|x|^{r-2}\in A_r\) with \(1<r<\infty \). By Hölder’s inequality, boundedness of the Riesz transforms on weighted \(L^p\) spaces (Theorem 9.4.6 in [12]), Lemma 2.2 and the Hardy inequality, there holds

$$\begin{aligned} V_1\le & {} 2r(t)(r(t)-2)\int _{{\mathbb {R}}^{3}} \left| \nabla \left( |w(\cdot , t)|^{\frac{r(t)}{2}}\right) \right| |w(\cdot , t)|^{\frac{r(t)}{2}-1} \left| \frac{\partial _i\partial _j}{\Delta }(v_iw_j+w_iv_j)\right| \textrm{d} x\nonumber \\\le & {} 4 r(t)(r(t)-2) C_{r}\Vert |x|^{\frac{r-2}{r}}\left( v_{c} \otimes w\right) \Vert _{L^{r}}\left\| \frac{w^{\frac{r}{2}-1}}{x^{\frac{r-2}{r}}} \right\| _{L^{\frac{2 r}{r-2}}}\Vert \nabla (|w(\cdot , t)|^{\frac{r}{2}})\Vert _{L^{2}}\nonumber \\\le & {} 4 r(t)(r(t)-2) C_{r}\Vert |x|v_{c} \Vert _{L^{\infty }}\Vert |x|^{-\frac{2}{r}} w\Vert _{L^{r}}\left\| \frac{w}{|x|^{\frac{2}{r}}}\right\| _{L^{r}}^{\frac{r}{2}-1}\Vert \nabla (|w(\cdot , t)|^{\frac{r}{2}})\Vert _{L^{2}}\nonumber \\\le & {} 4 r(t)(r(t)-2) C_{r}K_c\left\| \frac{|w|^{\frac{r}{2}}}{|x|}\right\| _{L^{2}}\Vert \nabla (|w(\cdot , t)|^{\frac{r}{2}})\Vert _{L^{2}}\nonumber \\\le & {} 8 r(t)(r(t)-2) C_{r} K_c\Vert \nabla (|w(\cdot , t)|^{\frac{r}{2}})\Vert _{L^{2}}^2, \end{aligned}$$
(8.7)

where \(C_r\) is as in Theorem 9.4.6 in [12]. Thanks to [15], we deduce that \(\Vert \frac{\partial _i\partial _j}{\Delta } f\Vert _{L^r} \le H_r\Vert f\Vert _{L^r} \). Combining with Hölder’s inequality and Sobolev embedding \({\dot{H}}^{1}({\mathbb {R}}^{3})\hookrightarrow L^6({\mathbb {R}}^{3})\), we have

$$\begin{aligned} V_2\le & {} 2r(t)(r(t)-2) \Vert \nabla (|w(\cdot , t)|^{\frac{r(t)}{2}})\Vert _{L^2}\Vert |w(\cdot , t)|^{\frac{r(t)}{2}-1} \Vert _{L^{\frac{6r}{r-2}}}\left\| \frac{\partial _i\partial _j}{\Delta }w_iw_j\right\| _{L^{\frac{3r}{r+1}}}\\\le & {} 2r(t)(r(t)-2) H_{\frac{3r}{r+1}}\Vert \nabla (|w(\cdot , t)|^{\frac{r(t)}{2}})\Vert _{L^2}\Vert |w(\cdot , t)|^{\frac{r(t)}{2}-1} \Vert _{L^{\frac{6r}{r-2}}}\left\| w \otimes w\right\| _{L^{\frac{3r}{r+1}}}\\\le & {} 2r(t)(r(t)-2) H_{\frac{3r}{r+1}}\Vert \nabla (|w(\cdot , t)|^{\frac{r(t)}{2}})\Vert _{L^2}\Vert w(\cdot , t) \Vert ^{\frac{r(t)}{2}-1}_{L^{3r}}\left\| w(\cdot , t)\right\| _{L^{3r}}\left\| w(\cdot , t)\right\| _{L^{3}}\\\le & {} 4r(t)(r(t)-2) H_{\frac{3r}{r+1}}\Vert \nabla (|w(\cdot , t)|^{\frac{r(t)}{2}})\Vert _{L^2}\Vert |w(\cdot , t)|^{\frac{r(t)}{2}}\Vert _{L^6}\Vert w(\cdot , t) \Vert _{L^{3}}\\\le & {} 4r(t)(r(t)-2) H_{\frac{3r}{r+1}}\Vert \nabla (|w(\cdot , t)|^{\frac{r(t)}{2}})\Vert ^2_{L^2}\Vert w(\cdot , t) \Vert _{L^{3}}. \end{aligned}$$

According to (1.13), when \(\Vert w_0\Vert _{L^3}\le \varepsilon _0,\) there holds

(8.8)

From the above estimates, we can finish the proof of Lemma 2.6. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, J. & Zhang, T. Asymptotic Stability of Landau Solutions to Navier–Stokes System Under \(L^p\)-Perturbations. J. Math. Fluid Mech. 25, 5 (2023). https://doi.org/10.1007/s00021-022-00751-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00751-x

Keywords

Navigation