Skip to main content

Advertisement

Log in

Dietary Na+ depletion up-regulates NKCC1 expression and enhances electrogenic Cl secretion in rat proximal colon

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The corticosteroid hormone, aldosterone, markedly enhances K+ secretion throughout the colon, a mechanism critical to its role in maintaining overall K+ balance. Previous studies demonstrated that basolateral NKCC1 was up-regulated by aldosterone in the distal colon specifically to support K+ secretion—which is distinct from the more well-established role of NKCC1 in supporting luminal Cl secretion. However, considerable segmental variability exists between proximal and distal colonic ion transport processes, especially concerning their regulation by aldosterone. Furthermore, delineating such region-specific effects has important implications for the management of various gastrointestinal pathologies. Experiments were therefore designed to determine whether aldosterone similarly up-regulates NKCC1 in the proximal colon to support K+ secretion. Using dietary Na+ depletion as a model of secondary hyperaldosteronism in rats, we found that proximal colon NKCC1 expression was indeed enhanced in Na+-depleted (i.e., hyperaldosteronemic) rats. Surprisingly, electrogenic K+ secretion was not detectable by short-circuit current (ISC) measurements in response to either basolateral bumetanide (NKCC1 inhibitor) or luminal Ba2+ (non-selective K+ channel blocker), despite enhanced K+ secretion in Na+-depleted rats, as measured by 86Rb+ fluxes. Expression of BK and IK channels was also found to be unaltered by dietary Na+ depletion. However, bumetanide-sensitive basal and agonist-stimulated Cl secretion (ISC) were significantly enhanced by Na+ depletion, as was CFTR Cl channel expression. These data suggest that NKCC1-dependent secretory pathways are differentially regulated by aldosterone in proximal and distal colon. Development of therapeutic strategies in treating pathologies related to aberrant colonic K+/Cl transport—such as pseudo-obstruction or ulcerative colitis—may benefit from these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data will be available on reasonable request.

Abbreviations

ENaC:

Epithelial Na+ channel

NKCC1:

Na+/K+/2Cl co-transporter 1

BK:

Large conductance K+ channel

IK:

Intermediate conductance K+ channel

CFTR:

Cystic fibrosis transmembrane conductance regulator

EDTA:

5 Ethylenediaminetetraacetic acid

DTT:

Dithiothreitol

PMSF:

Phenylmethylsulphonyl fluoride

CCH:

Carbachol

FSK:

Forskolin

ISC :

Short-circuit current

G.I:

Gastrointestinal

References

  1. Foster ES, Jones WJ, Hayslett JP, Binder HJ (1985) Role of aldosterone and dietary potassium in potassium adaptation in the distal colon of the rat. Gastroenterology 88:41–46. https://doi.org/10.1016/s0016-5085(85)80130-x

    Article  CAS  PubMed  Google Scholar 

  2. Halevy J, Budinger ME, Hayslett JP, Binder HJ (1986) Role of aldosterone in the regulation of sodium and chloride transport in the distal colon of sodium-depleted rats. Gastroenterology 91:1227–1233

    Article  CAS  PubMed  Google Scholar 

  3. Rechkemmer G, Halm DR (1989) Aldosterone stimulates K secretion across mammalian colon independent of Na absorption. Proc Natl Acad Sci USA 86:397–401. https://doi.org/10.1073/pnas.86.1.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amasheh S et al (2000) Differential regulation of ENaC by aldosterone in rat early and late distal colon. Ann N Y Acad Sci 915:92–94. https://doi.org/10.1111/j.1749-6632.2000.tb05227.x

    Article  CAS  PubMed  Google Scholar 

  5. Greig ER, Baker EH, Mathialahan T, Boot-Handford RP, Sandle GI (2002) Segmental variability of ENaC subunit expression in rat colon during dietary sodium depletion. Pflug Arch 444:476–483. https://doi.org/10.1007/s00424-002-0828-7

    Article  CAS  Google Scholar 

  6. Binder HJ, Foster ES, Budinger ME, Hayslett JP (1987) Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology 93:449–455

    Article  CAS  PubMed  Google Scholar 

  7. Foster ES, Budinger ME, Hayslett JP, Binder HJ (1986) Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption. J Clin Invest 77:228–235. https://doi.org/10.1172/JCI112281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikuma M, Kashgarian M, Binder HJ, Rajendran VM (1999) Differential regulation of NHE isoforms by sodium depletion in proximal and distal segments of rat colon. Am J Physiol 276:G539-549. https://doi.org/10.1152/ajpgi.1999.276.2.G539

    Article  CAS  PubMed  Google Scholar 

  9. Turnamian SG, Binder HJ (1989) Regulation of active sodium and potassium transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid receptors. J Clin Invest 84:1924–1929. https://doi.org/10.1172/JCI114380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foster ES, Hayslett JP, Binder HJ (1984) Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol 246:G611-617. https://doi.org/10.1152/ajpgi.1984.246.5.G611

    Article  CAS  PubMed  Google Scholar 

  11. Perry MD, Rajendran VM, MacLennan KA, Sandle GI (2016) Segmental differences in upregulated apical potassium channels in mammalian colon during potassium adaptation. Am J Physiol Gastrointest Liver Physiol 311:G785–G793. https://doi.org/10.1152/ajpgi.00181.2015

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rajendran VM, Sandle GI (2018) Colonic potassium absorption and secretion in health and disease. Compr Physiol 8:1513–1536. https://doi.org/10.1002/cphy.c170030

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sausbier M et al (2006) Distal colonic K(+) secretion occurs via BK channels. J Am Soc Nephrol 17:1275–1282. https://doi.org/10.1681/ASN.2005101111

    Article  CAS  PubMed  Google Scholar 

  14. Sorensen MV et al (2008) Aldosterone increases KCa1.1 (BK) channel-mediated colonic K+ secretion. J Physiol 586:4251–4264. https://doi.org/10.1113/jphysiol.2008.156968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sweiry JH, Binder HJ (1989) Characterization of aldosterone-induced potassium secretion in rat distal colon. J Clin Invest 83:844–851. https://doi.org/10.1172/JCI113967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh SK, O’Hara B, Talukder JR, Rajendran VM (2012) Aldosterone induces active K(+) secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon. Am J Physiol Cell Physiol 302:C1353-1360. https://doi.org/10.1152/ajpcell.00216.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lomax RB, McNicholas CM, Lombes M, Sandle GI (1994) Aldosterone-induced apical Na+ and K+ conductances are located predominantly in surface cells in rat distal colon. Am J Physiol 266:G71-82. https://doi.org/10.1152/ajpgi.1994.266.1.G71

    Article  CAS  PubMed  Google Scholar 

  18. Turnamian SG, Binder HJ (1990) Aldosterone and glucocorticoid receptor-specific agonists regulate ion transport in rat proximal colon. Am J Physiol 258:G492-498. https://doi.org/10.1152/ajpgi.1990.258.3.G492

    Article  CAS  PubMed  Google Scholar 

  19. Bazard P et al (2020) Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Sci Rep 10:15604. https://doi.org/10.1038/s41598-020-72450-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding B et al (2014) Direct control of Na(+)-K(+)-2Cl(-)-cotransport protein (NKCC1) expression with aldosterone. Am J Physiol Cell Physiol 306:C66-75. https://doi.org/10.1152/ajpcell.00096.2013

    Article  CAS  PubMed  Google Scholar 

  21. Nickerson AJ, Rajendran VM (2021) Aldosterone up-regulates basolateral Na(+) -K(+) -2Cl(-) cotransporter-1 to support enhanced large-conductance K(+) channel-mediated K(+) secretion in rat distal colon. FASEB J 35:e21606. https://doi.org/10.1096/fj.202100203R

    Article  CAS  PubMed  Google Scholar 

  22. Martin RS, Jones WJ, Hayslett JP (1983) Animal model to study the effect of adrenal hormones on epithelial function. Kidney Int 24:386–391

    Article  CAS  PubMed  Google Scholar 

  23. Edmonds CJ, Willis CL (1990) The effect of dietary sodium and potassium intake on potassium secretion and kinetics in rat distal colon. J Physiol 424:317–327. https://doi.org/10.1113/jphysiol.1990.sp018069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clarke LL (2009) A guide to Ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol 296:G1151-1166. https://doi.org/10.1152/ajpgi.90649.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu D et al (2017) Bumetanide treatment during early development rescues maternal separation-induced susceptibility to stress. Sci Rep 7:11878. https://doi.org/10.1038/s41598-017-12183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Halm ST, Halm DR (2012) Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 303:G1322-1334. https://doi.org/10.1152/ajpgi.00325.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang C, Kawabe H, Rotin D (2017) The ubiquitin ligase Nedd4L regulates the Na/K/2Cl Co-transporter NKCC1/SLC12A2 in the colon. J Biol Chem 292:3137–3145. https://doi.org/10.1074/jbc.M116.770065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang G, Cobbs S, Klein JD, O’Neill WC (2003) Aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle. Hypertension 41:1131–1135. https://doi.org/10.1161/01.HYP.0000066128.04083.CA

    Article  CAS  PubMed  Google Scholar 

  29. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111:931–943. https://doi.org/10.1172/JCI18326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reynolds A et al (2007) Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 582:507–524. https://doi.org/10.1113/jphysiol.2007.129718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bachmann O et al (2003) Expression and regulation of the Na+-K+-2Cl- cotransporter NKCC1 in the normal and CFTR-deficient murine colon. J Physiol 549:525–536. https://doi.org/10.1113/jphysiol.2002.030205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300:G82-98. https://doi.org/10.1152/ajpgi.00245.2010

    Article  CAS  PubMed  Google Scholar 

  33. Greger R (2000) Role of CFTR in the colon. Annu Rev Physiol 62:467–491. https://doi.org/10.1146/annurev.physiol.62.1.467

    Article  CAS  PubMed  Google Scholar 

  34. Kunzelmann K, Mehta A (2013) CFTR: a hub for kinases and crosstalk of cAMP and Ca2+. FEBS J 280:4417–4429. https://doi.org/10.1111/febs.12457

    Article  CAS  PubMed  Google Scholar 

  35. Seidler U et al (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca(2+)-dependent HCO3- secretion. J Physiol 505(Pt 2):411–423. https://doi.org/10.1111/j.1469-7793.1997.411bb.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benedetto R et al (2017) Epithelial chloride transport by CFTR requires TMEM16A. Sci Rep 7:12397. https://doi.org/10.1038/s41598-017-10910-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rottgen TS et al (2018) Dextran sulfate sodium-induced chronic colitis attenuates Ca(2+)-activated Cl(-) secretion in murine colon by downregulating TMEM16A. Am J Physiol Cell Physiol 315:C10–C20. https://doi.org/10.1152/ajpcell.00328.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunzelmann K et al (2019) Control of ion transport by Tmem16a expressed in murine intestine. Front Physiol 10:1262. https://doi.org/10.3389/fphys.2019.01262

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ramalho AS et al (2009) Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem 24:335–346. https://doi.org/10.1159/000257426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pineda-Farias JB et al (2015) Role of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats. Mol Pain 11:41. https://doi.org/10.1186/s12990-015-0042-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Epple HJ et al (2000) Early aldosterone effect in distal colon by transcriptional regulation of ENaC subunits. Am J Physiol Gastrointest Liver Physiol 278:G718-724. https://doi.org/10.1152/ajpgi.2000.278.5.G718

    Article  CAS  PubMed  Google Scholar 

  42. Musch MW, Lucioni A, Chang EB (2008) Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol 295:G909-919. https://doi.org/10.1152/ajpgi.90312.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arroyo JP et al (2011) Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 22:1707–1719. https://doi.org/10.1681/ASN.2011020132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mathialahan T, Maclennan KA, Sandle LN, Verbeke C, Sandle GI (2005) Enhanced large intestinal potassium permeability in end-stage renal disease. J Pathol 206:46–51. https://doi.org/10.1002/path.1750

    Article  CAS  PubMed  Google Scholar 

  45. Mathialahan T, Sandle GI (2003) Dietary potassium and laxatives as regulators of colonic potassium secretion in end-stage renal disease. Nephrol Dial Transpl 18:341–347. https://doi.org/10.1093/ndt/18.2.341

    Article  CAS  Google Scholar 

  46. van Dinter TG et al (2005) Stimulated active potassium secretion in a patient with colonic pseudo-obstruction: a new mechanism of secretory diarrhea. Gastroenterology 129:1268–1273. https://doi.org/10.1053/j.gastro.2005.07.029

    Article  PubMed  Google Scholar 

  47. Sandle GI et al (2007) Altered cryptal expression of luminal potassium (BK) channels in ulcerative colitis. J Pathol 212:66–73. https://doi.org/10.1002/path.2159

    Article  CAS  PubMed  Google Scholar 

  48. Sandle GI (2005) Pathogenesis of diarrhea in ulcerative colitis: new views on an old problem. J Clin Gastroenterol 39:S49-52. https://doi.org/10.1097/01.mcg.0000155520.04253.37

    Article  PubMed  Google Scholar 

  49. Ram P, Goyal A, Lu M, Sloan J, McElhaugh W (2016) Use of aldosterone antagonist to treat diarrhea and hypokalemia of Ogilvie’s syndrome. Case Rep Gastrointest Med 2016:1207240. https://doi.org/10.1155/2016/1207240

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lundgren O et al (2000) Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287:491–495. https://doi.org/10.1126/science.287.5452.491

    Article  CAS  PubMed  Google Scholar 

  51. Thiagarajah JR, Donowitz M, Verkman AS (2015) Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 12:446–457. https://doi.org/10.1038/nrgastro.2015.111

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sandle GI (1998) Salt and water absorption in the human colon: a modern appraisal. Gut 43:294–299. https://doi.org/10.1136/gut.43.2.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance rendered by Avinash Elangovan.

Funding

This study was supported by the National Institute of Health NIDDK grants DK104791 and DK112085 grants to VMR.

Author information

Authors and Affiliations

Authors

Contributions

AJN conceived the idea, performed experiments, wrote manuscript. VMR conceived the idea and got funding. Both AJN and VMR discussed and edited the manuscript.

Corresponding author

Correspondence to Vazhaikkurichi M. Rajendran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

All animal experimental procedures used in this study were approved by the West Virginia University Institutional Animal Care and Use Committee prior to the start of the project.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickerson, A.J., Rajendran, V.M. Dietary Na+ depletion up-regulates NKCC1 expression and enhances electrogenic Cl secretion in rat proximal colon. Cell. Mol. Life Sci. 80, 209 (2023). https://doi.org/10.1007/s00018-023-04857-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04857-x

Keywords

Navigation