Skip to main content

Advertisement

Log in

Functional Role of Basolateral ClC-2 Channels in the Regulation of Duodenal Anion Secretion in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Although ClC-2 channels are important in colonic Cl secretion, it is unclear about their roles in small intestinal anion secretion. Therefore, we sought to examine whether ClC-2 channels play important roles in anion secretion, particularly duodenal bicarbonate secretion (DBS).

Methods

Duodenal mucosae from mice were stripped of seromuscular layers and mounted in Ussing chambers. Both duodenal short-circuit current (Isc) and HCO3 secretion in vitro were simultaneously recorded. DBS in vivo was measured by a CO2-sensitive electrode.

Results

Lubiprostone, a selective ClC-2 activator, concentration-dependently increased both duodenal Isc and DBS only when applied basolaterally, but not when applied apically. Removal of extracellular Cl abolished lubiprostone-induced duodenal Isc, but did not alter HCO3 secretion even in the presence of DIDS, a Cl/HCO3 exchanger inhibitor. However, further addition of glibenclamide, a CFTR channel blocker, abolished lubiprostone-evoked HCO3 secretion. Moreover, lubiprostone-induced HCO3 secretion was impaired in CFTR−/− mice compared to wild-type littermates. Luminal perfusion of duodenal lumen with lubiprostone did not alter basal DBS in vivo, but lubiprostone (i.p.) was able to induce DBS, which was also significantly inhibited by Cd2+, a ClC-2 channel blocker. [Ca2+]cyt level, Ca2+-activated K+ channel- and cAMP-mediated duodenal Isc, and HCO3 secretion were unchanged by lubiprostone.

Conclusions

We have provided the first evidence for the novel functional role of basolateral ClC-2 channels in the regulation of duodenal anion secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CFTR:

Cystic fibrosis transmembrane conductance regulator

DBS:

Duodenal bicarbonate secretion

AE:

Anion exchangers

NBC:

Na+/HCO3 cotransporters

TER:

Transepithelial resistance

References

  1. Montrose MH, Keely S, Barrett K. Electrolyte secretion and absorption: small intestine and colon. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003:308–340.

    Google Scholar 

  2. Barrett KE. Integrated regulation of intestinal epithelial transport: intercellular and intracellular pathways. Am J Physiol. 1997;272:C1069–C1076.

    Article  CAS  PubMed  Google Scholar 

  3. Isenberg JI, Selling JA, Hogan DL, Koss MA. Impaired proximal duodenal mucosal bicarbonate secretion in patients with duodenal ulcer. N Engl J Med. 1987;316:374–379.

    Article  CAS  PubMed  Google Scholar 

  4. Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288:C1–C19.

    Article  CAS  PubMed  Google Scholar 

  5. Flemstrom G, Isenberg JI. Gastroduodenal mucosal alkaline secretion and mucosal protection. News Physiol Sci. 2001;16:23–28.

    CAS  PubMed  Google Scholar 

  6. Gyomorey K, Yeger H, Ackerley C, Garami E, Bear CE. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol. 2000;279:C1787–C1794.

    Article  CAS  PubMed  Google Scholar 

  7. Pena-Munzenmayer G, Catalan M, Cornejo I, et al. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci. 2005;118:4243–4252.

    Article  CAS  PubMed  Google Scholar 

  8. Mohammad-Panah R, Gyomorey K, Rommens J, et al. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem. 2001;276:8306–8313.

    Article  CAS  PubMed  Google Scholar 

  9. Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 2004;287:C1173–C1183.

    Article  CAS  PubMed  Google Scholar 

  10. Flores CA. ClC-2 and intestinal chloride secretion. Am J Physiol Gastrointest Liver Physiol. 2016;311:G775.

    Article  PubMed  Google Scholar 

  11. Lipecka J, Bali M, Thomas A, Fanen P, Edelman A, Fritsch J. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol. 2002;282:C805–C816.

    Article  CAS  Google Scholar 

  12. Catalan M, Cornejo I, Figueroa CD, Niemeyer MI, Sepulveda FV, Cid LP. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1004–G1013.

    Article  CAS  PubMed  Google Scholar 

  13. Jakab RL, Collaco AM, Ameen NA. Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci. 2012;57:2826–2845. https://doi.org/10.1007/s10620-012-2352-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bijvelds MJC, Bot AGM, Escher JC, de Jonge HR. Activation of intestinal Cl secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 2009;137:976–985.

    Article  CAS  PubMed  Google Scholar 

  15. Ao M, Venkatasubramanian J, Boonkaewwan C, et al. Lubiprostone activates Cl secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci. 2011;56:339–351. https://doi.org/10.1007/s10620-010-1495-8

    Article  CAS  PubMed  Google Scholar 

  16. Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3 secretion. Am J Physiol. 1997;272:G872–G878.

    CAS  PubMed  Google Scholar 

  17. Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. Acid-stimulated duodenal bicarbonate secretion involves a CFTR-mediated transport pathway in mice. Gastroenterology. 1997;113:533–541.

    Article  CAS  PubMed  Google Scholar 

  18. Snouwaert JN, Brigman KK, Latour AM, et al. An animal model for cystic fibrosis made by gene targeting. Science. 1992;257:1083–1088.

    Article  CAS  PubMed  Google Scholar 

  19. Clarke LL, Gawenis LR, Franklin CL, Harline MC. Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab Anim Sci. 1996;46:612–618.

    CAS  PubMed  Google Scholar 

  20. Dong H, Sellers ZM, Smith A, Chow JY, Barrett KE. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(−) secretion in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G457–G465.

    Article  CAS  PubMed  Google Scholar 

  21. Dong H, Smith A, Hovaida M, Chow JY. Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1120–G1128.

    Article  CAS  PubMed  Google Scholar 

  22. Pang G, Buret A, O'Loughlin E, Smith A, Batey R, Clancy R. Immunologic, functional, and morphological characterization of three new human small intestinal epithelial cell lines. Gastroenterology. 1996;111:8–18.

    Article  CAS  PubMed  Google Scholar 

  23. Buresi MC, Schleihauf E, Vergnolle N, et al.  Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(−) secretion in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2001;281:G323–G332.

    Article  CAS  PubMed  Google Scholar 

  24. Smith AJ, Chappell AE, Buret AG, Barrett KE, Dong H. 5-Hydroxytryptamine contributes significantly to a reflex pathway by which the duodenal mucosa protects itself from gastric acid injury. FASEB J. 2006;20:2486–2495.

    Article  CAS  PubMed  Google Scholar 

  25. Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH. Differentiation between human ClC-2 and CFTR Cl channels with pharmacological agents. Am J Physiol Cell Physiol. 2014;307:C479–C492.

    Article  CAS  PubMed  Google Scholar 

  26. Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295:G234–G251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuo B, Riederer B, Wang Z, Colledge WH, Soleimani M, Seidler U. Involvement of the anion exchanger SLC26A6 in prostaglandin E2-but not forskolin-stimulated duodenal HCO3 secretion. Gastroenterology. 2006;130:349–358.

    Article  CAS  PubMed  Google Scholar 

  28. Spiegel S, Phillipper M, Rossmann H, Riederer B, Gregor M, Seidler U. Independence of apical Cl/HCO3 exchange and anion conductance in duodenal HCO3 secretion. Am J Physiol Gastrointest Liver Physiol. 2003;285:G887–G897.

    Article  CAS  PubMed  Google Scholar 

  29. Reddy MM, Quinton PM. Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol. 2002;189:15–25.

    Article  CAS  PubMed  Google Scholar 

  30. Ito Y, Son M, Sato S, et al. ATP release triggered by activation of the Ca2+-activated K+ channel in human airway Calu-3 cells. Am J Respir Cell Mol Biol. 2004;30:388–395.

    Article  CAS  PubMed  Google Scholar 

  31. Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl currents in cultured rat astrocytes. J Physiol. 2006;572:677–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Devor DC, Singh AK, Gerlach AC, Frizzell RA, Bridges RJ. Inhibition of intestinal Cl secretion by clotrimazole: direct effect on basolateral membrane K+ channels. Am J Physiol. 1997;273:C531–C540.

    Article  CAS  PubMed  Google Scholar 

  33. Devor DC, Singh AK, Bridges RJ, Frizzell RA. Modulation of Cl secretion by benzimidazolones. II. Coordinate regulation of apical GCl and basolateral GK. Am J Physiol. 1996;271:L785–L795.

    CAS  PubMed  Google Scholar 

  34. Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol. 1996;271:L775–L784.

    CAS  PubMed  Google Scholar 

  35. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA. 2000;97:8151–8156.

    Article  CAS  PubMed  Google Scholar 

  36. Zdebik AA, Cuffe J, Bertog M. Additional disruption of the ClC-2 Cl(−) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem. 2004;279:22276–22283.

    Article  CAS  PubMed  Google Scholar 

  37. Catalan M, Niemeyer MI, Cid LP, Sepulveda FV. Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology. 2004;126:1104–1114.

    Article  CAS  PubMed  Google Scholar 

  38. Mizumori M, Akiba Y, Kaunitz JD. Lubiprostone stimulates duodenal bicarbonate secretion in rats. Dig Dis Sci. 2009;54:2063–2069. https://doi.org/10.1007/s10620-009-0907-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuppoletti J, Tewari KP, Chakrabarti J, Malinowska DH. Identification of the fatty acid activation site on human ClC-2. Am J Physiol Cell Physiol. 2017;312:C707–C723.

    Article  PubMed  Google Scholar 

  40. Thiemann A, Grunder S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992;356:57–60.

    Article  CAS  PubMed  Google Scholar 

  41. Bali M, Lipecka J, Edelman A, Fritsch J. Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol. 2001;280:C1588–C1598.

    Article  CAS  PubMed  Google Scholar 

  42. Murray CB, Chu S, Zeitlin PL. Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol. 1996;271:L829–L837.

    CAS  PubMed  Google Scholar 

  43. Kajita H, Omori K, Matsuda H. The chloride channel ClC-2 contributes to the inwardly rectifying Cl conductance in cultured porcine choroid plexus epithelial cells. J Physiol. 2000;523:313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueno R, Osama H, Habe T, Engelke K. Oral SPI-0211 increases intestinal fluid secretion and chloride concentration without altering serum electrolyte levels (abstract). Gastroenterology. 2004;126:A-298.

    Google Scholar 

  45. Johansen JF, Gargano M, Holland P, Patchen M. Phase III, efficacy and safety of RU-0211 a novel chloride channel activator, for the treatment of constipation (Abstract). Gastroenterology. 2003;124:A48.

    Article  Google Scholar 

  46. Kim SW, Parekh D, Townsend CJ, Thompson JC. Effects of aging on duodenal bicarbonate secretion. Ann Surg. 1990;212:332–337, 337–338.

  47. Valle JD, Chey W, Scheiman J. Acid peptic disorders. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  48. Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol-Gastr L. 2007;292:G647–G656.

    CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by research grants from the National Key Research and Development Program of China (No. 2016YFC1302200 to HD) and the National Natural Science Foundation of China (Nos. 81570477 and 81873544 to HD).

Author information

Authors and Affiliations

Authors

Contributions

HD designed and supervised the project, wrote and finalized the manuscript. CD and JL conducted most experiments and data analysis. HXW conducted some experiments. XZ finalized the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hui Dong or Xiaoyan Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Liu, J., Wan, H. et al. Functional Role of Basolateral ClC-2 Channels in the Regulation of Duodenal Anion Secretion in Mice. Dig Dis Sci 64, 2527–2537 (2019). https://doi.org/10.1007/s10620-019-05578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05578-7

Keywords

Navigation