Skip to main content
Log in

Effects of short-term endurance and strength exercise in the molecular regulation of skeletal muscle in hyperinsulinemic and hyperglycemic Slc2a4+/− mice

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Objective

Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/−) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet.

Methods

Slc2a4+/− mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line.

Results

When Slc2a4+/− mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle.

Conclusions

Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/− mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wiebe N, Ye F, Crumley ET, Bello A, Stenvinkel P, Tonelli M (2021) Temporal associations among body mass index, fasting insulin, and systemic inflammation. JAMA Netw Open 4(3):e211263. https://doi.org/10.1001/jamanetworkopen.2021.1263

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dankner R, Chetrit A, Shanik MHH, Raz I, Roth J (2012) Basal state hyperinsulinemia in healthy normoglycemic adults heralds dysglycemia after more than two decades of follow up. Diabetes Metab Res Rev 28(7):618–624. https://doi.org/10.1002/dmrr.2322

    Article  CAS  PubMed  Google Scholar 

  3. Zimmet PZ, Collins VR, Dowse GK, Knight LT (1992) Hyperinsulinaemia in youth is a predictor of type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35(6):534–541. https://doi.org/10.1007/BF00400481

    Article  CAS  PubMed  Google Scholar 

  4. Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 92(4):983–987. https://doi.org/10.1073/pnas.92.4.983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Investig 76(1):149–155. https://doi.org/10.1172/JCI111938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30(12):1000–1007. https://doi.org/10.2337/diab.30.12.1000

    Article  CAS  PubMed  Google Scholar 

  7. Marangou AG, Weber KM, Boston RC, Aitken PM, Heggie JCP, Kirsner RLG et al (1986) Metabolic consequences of prolonged hyperinsulinemia in humans: evidence for induction of insulin insensitivity. Diabetes 35(12):1383–1389. https://doi.org/10.2337/diab.35.12.1383

    Article  CAS  PubMed  Google Scholar 

  8. Cen HH, Hussein B, Botezelli JD, Wang S, Zhang JA, Noursadeghi N et al (2022) Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. FASEB J. https://doi.org/10.1096/fj.202100497RR

    Article  PubMed  Google Scholar 

  9. Page MM, Skovs S, Cen H, Chiu AP, Dionne DA, Hutchinson DF et al (2018) Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain. FASEB J 32(3):1196–1206. https://doi.org/10.1096/fj.201700518R

    Article  CAS  PubMed  Google Scholar 

  10. Templeman NM, Flibotte S, Chik JHL, Sinha S, Lim GE, Foster LJ et al (2017) Reduced circulating insulin enhances insulin sensitivity in old mice and extends lifespan. Cell Rep 20(2):451–463. https://doi.org/10.1016/j.celrep.2017.06.048

    Article  CAS  PubMed  Google Scholar 

  11. Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu K-Y, Hu X et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16(6):723–737. https://doi.org/10.1016/j.cmet.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  12. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252. https://doi.org/10.1016/j.cmet.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  13. Reno CM, Puente EC, Sheng Z, Daphna-Iken D, Bree AJ, Routh VH et al (2017) Brain GLUT4 knockout mice have impaired glucose tolerance, decreased insulin sensitivity, and impaired hypoglycemic counterregulation. Diabetes 66(3):587–597. https://doi.org/10.2337/db16-0917

    Article  CAS  PubMed  Google Scholar 

  14. Sylow L, Kleinert M, Richter EA, Jensen TE (2017) Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nat Rev Endocrinol 13(3):133–148. https://doi.org/10.1038/nrendo.2016.162

    Article  CAS  PubMed  Google Scholar 

  15. Sangwung P, Petersen KF, Shulman GI, Knowles JW (2020) Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. https://doi.org/10.1210/endocr/bqaa017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599. https://doi.org/10.2337/db06-0981

    Article  CAS  PubMed  Google Scholar 

  17. Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM et al (1997) GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 3(10):1096–1101

    Article  CAS  PubMed  Google Scholar 

  18. Hoene M, Kappler L, Kollipara L, Hu C, Irmler M, Bleher D et al (2021) Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability. Mol Metab 54:101359. https://doi.org/10.1016/j.molmet.2021.101359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fredrickson G, Barrow F, Dietsche K, Parthiban P, Khan S, Robert S et al (2021) Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH. Mol Metab. https://doi.org/10.1016/j.molmet.2021.101270

    Article  PubMed  PubMed Central  Google Scholar 

  20. Macfarlane DP, Forbes S, Walker BR (2008) Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197(2):189–204. https://doi.org/10.1677/JOE-08-0054

    Article  CAS  PubMed  Google Scholar 

  21. Hawley JAA, Hargreaves M, Joyner MJJ, Zierath JRR (2014) Integrative biology of exercise. Cell 159(4):738–749. https://doi.org/10.1016/j.cell.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Komada M, Takao K, Miyakawa T (2008) Elevated Plus Maze for Mice. J Vis Exp. https://doi.org/10.3791/1088

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oliveira de Almeida WA, Maculano Esteves A, Leite de Almeida-Júnior C, Lee KS, Kannebley Frank M, Oliveira Mariano M et al (2014) The effects of long-term dopaminergic treatment on locomotor behavior in rats. Sleep Sci 7(4):203–208. https://doi.org/10.1016/j.slsci.2014.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bala M, Gupta P, Gupta S, Dua A, Injeti E, Mittal A (2021) Efficient and modified 2-NBDG assay to measure glucose uptake in cultured myotubes. J Pharmacol Toxicol Methods. https://doi.org/10.1016/j.vascn.2021.107069

    Article  PubMed  Google Scholar 

  25. Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nature 576(7785):51–60. https://doi.org/10.1038/s41586-019-1797-8

    Article  CAS  PubMed  Google Scholar 

  26. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. https://doi.org/10.2337/dc08-s264

    Article  PubMed  Google Scholar 

  27. Corkey BE (2012) Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 61(1):4–13. https://doi.org/10.2337/db11-1483

    Article  CAS  PubMed  Google Scholar 

  28. Bird SR, Hawley JA (2017) Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med 2(1):e000143. https://doi.org/10.1136/bmjsem-2016-000143

    Article  PubMed  PubMed Central  Google Scholar 

  29. Richter EA, Sylow L, Hargreaves M (2021) Interactions between insulin and exercise. Biochem J 478(21):3827–3846. https://doi.org/10.1042/BCJ20210185

    Article  CAS  PubMed  Google Scholar 

  30. Hu G, Rico-Sanz J, Lakka TA, Tuomilehto J (2006) Exercise, genetics and prevention of type 2 diabetes. Essays Biochem 42:177–192. https://doi.org/10.1042/bse0420177

    Article  PubMed  Google Scholar 

  31. Rome S, Clément K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS et al (2003) Microarray profiling of human skeletal muscle reveals that insulin regulates ∼800 genes during a hyperinsulinemic clamp. J Biol Chem 278(20):18063–18068. https://doi.org/10.1074/jbc.M300293200

    Article  CAS  PubMed  Google Scholar 

  32. Batista TM, Garcia-Martin R, Cai W, Konishi M, O’Neill BT, Sakaguchi M et al (2019) Multi-dimensional transcriptional remodeling by physiological insulin in vivo. Cell Rep 26(12):3429-3443. https://doi.org/10.1016/j.celrep.2019.02.081 (e3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3β/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci 100(20):11624–11629. https://doi.org/10.1073/pnas.1931483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H et al (2020) A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metab 32(5):844-859. https://doi.org/10.1016/j.cmet.2020.08.007 (e5)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato S, Dyar KA, Treebak JT, Jepsen SL, Ehrlich AM, Ashcroft SP et al (2022) Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab 34(2):329-345.e8. https://doi.org/10.1016/j.cmet.2021.12.016 (e8)

    Article  CAS  PubMed  Google Scholar 

  36. Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. findings from the third national health and nutrition examination survey. J Clin Endocrinol Metab 96(9):2898–2903. https://doi.org/10.1210/jc.2011-0435

    Article  CAS  PubMed  Google Scholar 

  37. Kim K, Park SM (2018) Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study. Sci Rep 8(1):2703. https://doi.org/10.1038/s41598-018-21168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. MacDonald TL, Pattamaprapanont P, Cooney EM, Nava RC, Mitri J, Hafida S et al (2022) Canagliflozin prevents hyperglycemia-associated muscle extracellular matrix accumulation and improves the adaptive response to aerobic exercise. Diabetes 71(5):881–893. https://doi.org/10.2337/db21-0934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacDonald TL, Pattamaprapanont P, Pathak P, Fernandez N, Freitas EC, Hafida S et al (2020) Hyperglycaemia is associated with impaired muscle signalling and aerobic adaptation to exercise. Nat Metab 2(9):902–917. https://doi.org/10.1038/s42255-020-0240-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally JR et al (2015) A micropeptide encoded by a putative long noncoding rna regulates muscle performance. Cell 160(4):595–606. https://doi.org/10.1016/j.cell.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125. https://doi.org/10.1038/nature08778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jing E, O’Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62(10):3404–3417. https://doi.org/10.2337/db12-1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koh J-H, Pataky MW, Dasari S, Klaus KA, Vuckovic I, Ruegsegger GN et al (2022) Enhancement of anaerobic glycolysis—a role of PGC-1α4 in resistance exercise. Nat Commun 13(1):2324. https://doi.org/10.1038/s41467-022-30056-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G et al (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497(7450):451–457. https://doi.org/10.1038/nature12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P et al (2016) NAD + repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352(6292):1436–1443. https://doi.org/10.1126/science.aaf2693

    Article  CAS  PubMed  Google Scholar 

  46. Pirinen E, Cantó C, Jo YS, Morato L, Zhang H, Menzies KJ et al (2014) Pharmacological inhibition of poly(ADP-Ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19(6):1034–1041. https://doi.org/10.1016/j.cmet.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van de Weijer T, Phielix E, Bilet L, Williams EG, Ropelle ER, Bierwagen A et al (2015) Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64(4):1193–1201. https://doi.org/10.2337/db14-0667

    Article  CAS  PubMed  Google Scholar 

  48. Cordeiro AV, Peruca GF, Braga RR, Brícola RS, Lenhare L, Silva VRR et al (2021) High-intensity exercise training induces mitonuclear imbalance and activates the mitochondrial unfolded protein response in the skeletal muscle of aged mice. GeroScience 43(3):1513–1518. https://doi.org/10.1007/s11357-020-00246-5

    Article  CAS  PubMed  Google Scholar 

  49. Cordeiro AV, Brícola RS, Braga RR, Lenhare L, Silva VRR, Anaruma CP et al (2020) Aerobic Exercise Training Induces the Mitonuclear Imbalance and UPRmt in the Skeletal Muscle of Aged Mice. J Gerontol Series A 75(12):2258–2261. https://doi.org/10.1093/gerona/glaa059

    Article  CAS  Google Scholar 

  50. Braga RR, Crisol BM, Brícola RS, Sant’ana, MR, Nakandakari SCBR, Costa SO et al (2021) Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPRmt in the hypothalamus of mice. Sci Rep. https://doi.org/10.1038/s41598-021-82352-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao AW, El Alam G, Lalou A, Li TY, Molenaars M, Zhu Y et al (2022) Multi-omics analysis identifies essential regulators of mitochondrial stress response in two wild-type C. elegans strains. IScience 25(2):103734. https://doi.org/10.1016/j.isci.2022.103734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A et al (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10(10):1681–1691. https://doi.org/10.1016/j.celrep.2015.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozkurede U, Miller RA (2019) Improved mitochondrial stress response in long-lived Snell dwarf mice. Aging Cell. https://doi.org/10.1111/acel.13030

    Article  PubMed  PubMed Central  Google Scholar 

  54. Molenaars M, Janssens GE, Williams EG, Jongejan A, Lan J, Rabot S et al (2020) A conserved mito-cytosolic translational balance links two longevity pathways. Cell Metab 31(3):549-563. https://doi.org/10.1016/j.cmet.2020.01.011 (e7)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by FAEPEX, the National Council for Scientific and Technological Development (CNPq; case numbers 303571/2018–7; 140285/2016–4; 442542/2014–3 and 306535/2017–3), the Coordination for the Improvement of Higher Education Personnel (CAPES; finance code 001), and the São Paulo Research Foundation (FAPESP; case numbers 2015/26000–2, 2016/18488–8, 2018/20872–6, 2019/11820–5, 2020/13443–1 and 2021/08692–5).

Author information

Authors and Affiliations

Authors

Contributions

VRM and JRP wrote the paper and were ultimately responsible for the experiments in this study. VRM, JDB, RCG, ALR, RFLV, SCBRN and GCA. designed and performed the experiments with animals. BMC and RRB performed the mitochondrial function experiments. VRM, MBS, and FMS designed and performed the cell culture experiments. SQB, CDR, and LAV contributed to PET scan experiments. LAV, FMS, LPM, ASRS, ERR, DEC, and JRP contributed to the discussion and laboratory support. All the authors have read, critically revised, and approved this manuscript.

Corresponding authors

Correspondence to Vitor Rosetto Muñoz or José Rodrigo Pauli.

Ethics declarations

Conflict of interest

The authors of this study have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2023_4771_MOESM1_ESM.tif

Figure S1. Morphological and physiological parameters. A. Fasting glucose at baseline (before exercise) and after (16 h and 90 h) exercise. B. Fasting insulin at baseline (before exercise) and after (16 h and 90 h) exercise. C. Body weight. D. Lee index. E. Total fat weight. F. Tissue weights (gastrocnemius, heart, mesenteric WAT, retroperitoneal WAT, perigonadal WAT, inguinal WAT, and brown adipose tissue). G. Representative images of hematoxylin–eosin (H&E, 10x, scale bar: 100 µM) in the liver. H. Liver tissue weight. I. Biochemical parameters in the serum (triglycerides, cholesterol, and high-density lipoprotein. J. mRNA levels of gluconeogenic genes (Pepck, G6pase, and Pc). In A-B, n = 7/group was used (* p < 0.05 vs WT group. # p < 0.05 vs Basal condition). In C-F,H n = 9/group was used. In I-J, n = 5/group was used. * p < 0.05 vs WT group. # p < 0.05 vs Slc2a4+/− Sedentary group. (TIF 13534 KB)

18_2023_4771_MOESM2_ESM.tif

Figure S2. Gene ontology analyses of up/downregulated genes in the skeletal muscle of Slc2a4+/− mice. A. Biological process, cellular components, and molecular functions of upregulated genes in the endurance versus sedentary comparison. B. Biological process, cellular components, and molecular functions of downregulated genes in the endurance versus sedentary comparison. C. Biological process, cellular components, and molecular functions of upregulated genes in the strength versus sedentary comparison. D. Biological process, cellular components, and molecular functions of downregulated genes in the strength versus sedentary comparison. E. Confirmation of common downregulated genes in the gastrocnemius of Slc2a4+/− mice (Cdh4, Ctgf1, Gas1, Hey1, Penk, Ptprb, Amd2, Sorbs2). F-G. Confirmation of common upregulated genes in the gastrocnemius of Slc2a4+/− mice (Srxn1, Irx3, Klhl40, Hspa1a, Hspa1b, Hspb1, Ninj1, Hspb7, Ogdha, Lmcd1, Nfic, Bcl2l13, Retsat, Hspa9, Dnaja4, Fads6, Hadha). In E–G, n = 5, 6, 6 was used. # p < 0.05 vs Slc2a4+/− Sedentary group. (TIF 10541 KB)

18_2023_4771_MOESM3_ESM.tif

Figure S3. Behavioral response after exercise protocols. A. Schematic figure of the groups submitted to the elevated plus maze and open field test (Slc2a4+/− Sedentary, and Slc2a4+/− Endurance or Strength after exercise protocol). B. Time in the border during the open field test. C. Time in the center during the open field test. D. Grooming times during the open field test. E. Percentage of time spent in the open arms during the elevated plus maze test. F. Percentage of time spent in the closed arms during the elevated plus maze test. G. Percentage of time spent in the center during the elevated plus maze test. H. Percentage of entries in the open arms during the elevated plus maze test. I. Corticosterone levels in the serum. In B-H, n = 5/group was used. In I, n = 4, 5, 5 was used. (TIF 3995 KB)

18_2023_4771_MOESM4_ESM.tif

Figure S4. Adipose tissue alterations among the groups. A. Browning-related genes (Pgc1a, Prdm16, Ucp1, Nrf1, and Cs) in the pgWAT. B. Browning-related genes (Pgc1a, Prdm16, Ucp1, Nrf1, Cs) in the ingWAT. C. Browning-related genes (Pgc1a, Prdm16, Ucp1, Nrf1, Cs) in the BAT. D. Representative images of hematoxylin–eosin (H&E, 10x) in the pgWAT. E. Representative images of hematoxylin–eosin (H&E, 10x) in the ingWAT. F. Representative images of hematoxylin–eosin (H&E, 10x, scale bar: 100 µM) in the BAT. In A-C, n = 5/group was used. # p < 0.05 vs Slc2a4+/− Sedentary group. (TIF 20533 KB)

18_2023_4771_MOESM5_ESM.tif

Figure S5. Indirect calorimetry among the groups. A. VO2 consumption during dark and light cycles, and Area under the curve (AUC). B. Heat production during dark and light cycle, and Area under the curve (AUC). C. VCO2 consumption during dark and light cycle, and Area under the curve (AUC). D. Accumulative food intake during dark and light cycle, and Area under the curve (AUC). E. Respiratory exchange ratio (RER) during dark and light cycle, and Area under the curve (AUC). F. Locomotor activity during dark and light cycle, and Area under the curve (AUC). In A-F, n = 5/group was used. * p < 0.05 vs WT group. # p < 0.05 vs Slc2a4+/− Sedentary group. (TIF 9250 KB)

Supplementary file 6 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, V.R., Botezelli, J.D., Gaspar, R.C. et al. Effects of short-term endurance and strength exercise in the molecular regulation of skeletal muscle in hyperinsulinemic and hyperglycemic Slc2a4+/− mice. Cell. Mol. Life Sci. 80, 122 (2023). https://doi.org/10.1007/s00018-023-04771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04771-2

Keywords

Navigation