Skip to main content

Advertisement

Log in

The role of amphiregulin in ovarian function and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

This is a narrative review based on published data.

References

  1. Chang HM, Qiao J, Leung PC (2016) Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 23:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conti M, Hsieh M, Park JY, Su YQ (2006) Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol 20:715–723

    Article  CAS  PubMed  Google Scholar 

  3. Richani D, Gilchrist RB (2018) The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 24:1–14

    Article  CAS  PubMed  Google Scholar 

  4. Shoyab M, McDonald VL, Bradley JG, Todaro GJ (1988) Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85:6528–6532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plowman GD, Green JM, McDonald VL, Neubauer MG, Disteche CM, Todaro GJ, Shoyab M (1990) The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol 10:1969–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076

    Article  CAS  PubMed  Google Scholar 

  7. Johnson GR, Kannan B, Shoyab M, Stromberg K (1993) Amphiregulin induces tyrosine phosphorylation of the epidermal growth factor receptor and p185erbB2. Evidence that amphiregulin acts exclusively through the epidermal growth factor receptor at the surface of human epithelial cells. J Biol Chem 268:2924–2931

    Article  CAS  PubMed  Google Scholar 

  8. Berasain C, Avila MA (2014) Amphiregulin. Semin Cell Dev Biol 28:31–41

    Article  CAS  PubMed  Google Scholar 

  9. Sebio A et al (2014) Intergenic polymorphisms in the amphiregulin gene region as biomarkers in metastatic colorectal cancer patients treated with anti-EGFR plus irinotecan. Pharmacogenom J 14:256–262

    Article  CAS  Google Scholar 

  10. Sanderson MP, Dempsey PJ, Dunbar AJ (2006) Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24:121–136

    Article  CAS  PubMed  Google Scholar 

  11. Levano KS, Kenny PA (2012) Clarification of the C-terminal proteolytic processing site of human amphiregulin. FEBS Lett 586:3500–3502

    Article  CAS  PubMed  Google Scholar 

  12. Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, Lee DC (2004) Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 279:24179–24188

    Article  CAS  PubMed  Google Scholar 

  13. Sahin U et al (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sunnarborg SW et al (2002) Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem 277:12838–12845

    Article  CAS  PubMed  Google Scholar 

  15. Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ (1998) Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 273:17258–17268

    Article  CAS  PubMed  Google Scholar 

  16. Gephart JD, Singh B, Higginbotham JN, Franklin JL, Gonzalez A, Folsch H, Coffey RJ (2011) Identification of a novel mono-leucine basolateral sorting motif within the cytoplasmic domain of amphiregulin. Traffic 12:1793–1804

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda S, Nishida-Fukuda H, Nakayama H, Inoue H, Higashiyama S (2012) Monoubiquitination of pro-amphiregulin regulates its endocytosis and ectodomain shedding. Biochem Biophys Res Commun 420:315–320

    Article  CAS  PubMed  Google Scholar 

  18. Inui S, Higashiyama S, Hashimoto K, Higashiyama M, Yoshikawa K, Taniguchi N (1997) Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J Cell Physiol 171:291–298

    Article  CAS  PubMed  Google Scholar 

  19. Willmarth NE, Ethier SP (2006) Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 281:37728–37737

    Article  CAS  PubMed  Google Scholar 

  20. Higginbotham JN et al (2011) Amphiregulin exosomes increase cancer cell invasion. Curr Biol 21:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kowalczyk A, Wrzecinska M, Czerniawska-Piatkowska E, Kupczynski R (2022) Exosomes—spectacular role in reproduction. Biomed Pharmacother 148:112752

    Article  CAS  PubMed  Google Scholar 

  22. Di Pietro C (2016) Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet 33:303–311

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peterson EA, Shabbeer S, Kenny PA (2012) Normal range of serum Amphiregulin in healthy adult human females. Clin Biochem 45:460–463

    Article  CAS  PubMed  Google Scholar 

  24. Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R (2022) Amphiregulin in cellular physiology, health, and disease: potential use as a biomarker and therapeutic target. J Cell Physiol 237:1143–1156

    Article  CAS  PubMed  Google Scholar 

  25. Modrell B, McDonald VL, Shoyab M (1992) The interaction of amphiregulin with nuclei and putative nuclear localization sequence binding proteins. Growth Factors 7:305–314

    Article  CAS  PubMed  Google Scholar 

  26. Isokane M, Hieda M, Hirakawa S, Shudou M, Nakashiro K, Hashimoto K, Hamakawa H, Higashiyama S (2008) Plasma-membrane-anchored growth factor pro-amphiregulin binds A-type lamin and regulates global transcription. J Cell Sci 121:3608–3618

    Article  CAS  PubMed  Google Scholar 

  27. Taira N, Yamaguchi T, Kimura J, Lu ZG, Fukuda S, Higashiyama S, Ono M, Yoshida K (2014) Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage. Proc Natl Acad Sci USA 111:717–722

    Article  CAS  PubMed  Google Scholar 

  28. Johnson GR, Saeki T, Auersperg N, Gordon AW, Shoyab M, Salomon DS, Stromberg K (1991) Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells: nuclear localization of endogenous amphiregulin. Biochem Biophys Res Commun 180:481–488

    Article  CAS  PubMed  Google Scholar 

  29. Lysiak JJ, Johnson GR, Lala PK (1995) Localization of amphiregulin in the human placenta and decidua throughout gestation: role in trophoblast growth. Placenta 16:359–366

    Article  CAS  PubMed  Google Scholar 

  30. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9:52

    Article  PubMed  Google Scholar 

  31. Singh B, Carpenter G, Coffey RJ (2016) EGF receptor ligands: recent advances. F1000Res 5:2270

    Article  Google Scholar 

  32. Macdonald-Obermann JL, Pike LJ (2014) Different epidermal growth factor (EGF) receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J Biol Chem 289:26178–26188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  34. Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A (2011) The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 1816:119–131

    CAS  PubMed  Google Scholar 

  35. Threadgill DW et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  CAS  PubMed  Google Scholar 

  36. Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–238

    Article  CAS  PubMed  Google Scholar 

  37. Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A (2005) Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146:77–84

    Article  CAS  PubMed  Google Scholar 

  38. Prochazka R, Srsen V, Nagyova E, Miyano T, Flechon JE (2000) Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus cell complexes: nuclear maturation, expansion, and F-actin remodeling. Mol Reprod Dev 56:63–73

    Article  CAS  PubMed  Google Scholar 

  39. Goud PT, Goud AP, Qian C, Laverge H, Van der Elst J, De Sutter P, Dhont M (1998) In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum Reprod 13:1638–1644

    Article  CAS  PubMed  Google Scholar 

  40. Das K, Phipps WR, Hensleigh HC, Tagatz GE (1992) Epidermal growth factor in human follicular fluid stimulates mouse oocyte maturation in vitro. Fertil Steril 57:895–901

    Article  CAS  PubMed  Google Scholar 

  41. Dekel N, Sherizly I (1985) Epidermal growth factor induces maturation of rat follicle-enclosed oocytes. Endocrinology 116:406–409

    Article  CAS  PubMed  Google Scholar 

  42. Inoue Y, Miyamoto S, Fukami T, Shirota K, Yotsumoto F, Kawarabayashi T (2009) Amphiregulin is much more abundantly expressed than transforming growth factor-alpha and epidermal growth factor in human follicular fluid obtained from patients undergoing in vitro fertilization-embryo transfer. Fertil Steril 91:1035–1041

    Article  CAS  PubMed  Google Scholar 

  43. Reeka N, Berg FD, Brucker C (1998) Presence of transforming growth factor alpha and epidermal growth factor in human ovarian tissue and follicular fluid. Hum Reprod 13:2199–2205

    Article  CAS  PubMed  Google Scholar 

  44. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303:682–684

    Article  CAS  PubMed  Google Scholar 

  45. Hsieh M, Zamah AM, Conti M (2009) Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation. Semin Reprod Med 27:52–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arroyo A, Kim B, Yeh J (2020) Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod Sci 27:1223–1252

    Article  CAS  PubMed  Google Scholar 

  47. Richani D, Ritter LJ, Thompson JG, Gilchrist RB (2013) Mode of oocyte maturation affects EGF-like peptide function and oocyte competence. Mol Hum Reprod 19:500–509

    Article  CAS  PubMed  Google Scholar 

  48. Chen J et al (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsieh M et al (2007) Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 27:1914–1924

    Article  CAS  PubMed  Google Scholar 

  50. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750

    Article  CAS  PubMed  Google Scholar 

  51. Sekiguchi T, Mizutani T, Yamada K, Kajitani T, Yazawa T, Yoshino M, Miyamoto K (2004) Expression of epiregulin and amphiregulin in the rat ovary. J Mol Endocrinol 33:281–291

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita Y, Kawashima I, Yanai Y, Nishibori M, Richards JS, Shimada M (2007) Hormone-induced expression of tumor necrosis factor alpha-converting enzyme/A disintegrin and metalloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology 148:6164–6175

    Article  CAS  PubMed  Google Scholar 

  53. Puri P, Little-Ihrig L, Chandran U, Law NC, Hunzicker-Dunn M, Zeleznik AJ (2016) Protein kinase A: a master kinase of granulosa cell differentiation. Sci Rep 6:28132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Freimann S, Ben-Ami I, Dantes A, Armon L, Ben Ya’cov-Klein A, Ron-El R, Amsterdam A (2005) Differential expression of genes coding for EGF-like factors and ADAMTS1 following gonadotropin stimulation in normal and transformed human granulosa cells. Biochem Biophys Res Commun 333:935–943

    Article  CAS  PubMed  Google Scholar 

  55. Duffy DM (2015) Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 21:652–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimada M, Hernandez-Gonzalez I, Gonzalez-Robayna I, Richards JS (2006) Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol 20:1352–1365

    Article  CAS  PubMed  Google Scholar 

  57. Ben-Ami I et al (2006) PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: new insights into the coordination between PGE2 and LH in ovulation. Mol Hum Reprod 12:593–599

    Article  CAS  PubMed  Google Scholar 

  58. Shrestha K, Lukasik K, Baufeld A, Vanselow J, Moallem U, Meidan R (2015) Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2. Reproduction 149:21–29

    Article  PubMed  Google Scholar 

  59. Wayne CM, Fan HY, Cheng X, Richards JS (2007) Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol 21:1940–1957

    Article  CAS  PubMed  Google Scholar 

  60. Liu Z, Fan HY, Wang Y, Richards JS (2010) Targeted disruption of Mapk14 (p38MAPKalpha) in granulosa cells and cumulus cells causes cell-specific changes in gene expression profiles that rescue COC expansion and maintain fertility. Mol Endocrinol 24:1794–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dunning KR, Watson LN, Zhang VJ, Brown HM, Kaczmarek AK, Robker RL, Russell DL (2015) Activation of mouse cumulus-oocyte complex maturation in vitro through EGF-like activity of versican. Biol Reprod 92:116

    Article  PubMed  Google Scholar 

  62. Heldring N et al (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931

    Article  CAS  PubMed  Google Scholar 

  63. Olde B, Leeb-Lundberg LM (2009) GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol Metab 20:409–416

    Article  CAS  PubMed  Google Scholar 

  64. Zhang H et al (2020) Mechanisms of estradiol-induced EGF-like factor expression and oocyte maturation via G protein-coupled estrogen receptor. Endocrinology 161:bqaa190

    Article  PubMed  Google Scholar 

  65. Ma Y et al (2021) Lysophosphatidic acid improves oocyte quality during IVM by activating the ERK1/2 pathway in cumulus cells and oocytes. Mol Hum Reprod 27:gaab032

    Article  PubMed  Google Scholar 

  66. Ruohonen ST, Poutanen M, Tena-Sempere M (2020) Role of kisspeptins in the control of the hypothalamic-pituitary-ovarian axis: old dogmas and new challenges. Fertil Steril 114:465–474

    Article  CAS  PubMed  Google Scholar 

  67. Fabova Z, Loncova B, Mlyn Ek M, Sirotkin AV (2022) Interrelationships between amphiregulin, kisspeptin, FSH and FSH receptor in promotion of human ovarian cell functions. Reprod Fertil Dev 34:362–377

    Article  CAS  PubMed  Google Scholar 

  68. Puttabyatappa M, Brogan RS, Vandevoort CA, Chaffin CL (2013) EGF-like ligands mediate progesterone’s anti-apoptotic action on macaque granulosa cells. Biol Reprod 88:18

    Article  PubMed  Google Scholar 

  69. Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, Richards JS (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324:938–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu C, Zhang YL, Fan HY (2013) Selective Smad4 knockout in ovarian preovulatory follicles results in multiple defects in ovulation. Mol Endocrinol 27:966–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim K, Lee H, Threadgill DW, Lee D (2011) Epiregulin-dependent amphiregulin expression and ERBB2 signaling are involved in luteinizing hormone-induced paracrine signaling pathways in mouse ovary. Biochem Biophys Res Commun 405:319–324

    Article  CAS  PubMed  Google Scholar 

  72. Nautiyal J et al (2010) The nuclear receptor cofactor receptor-interacting protein 140 is a positive regulator of amphiregulin expression and cumulus cell-oocyte complex expansion in the mouse ovary. Endocrinology 151:2923–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li F, Liu J, Jo M, Curry TE Jr (2011) A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression. Mol Endocrinol 25:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bertolin K, Gossen J, Schoonjans K, Murphy BD (2014) The orphan nuclear receptor Nr5a2 is essential for luteinization in the female mouse ovary. Endocrinology 155:1931–1943

    Article  PubMed  Google Scholar 

  75. Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertolin K, Meinsohn MC, Suzuki J, Gossen J, Schoonjans K, Duggavathi R, Murphy BD (2017) Ovary-specific depletion of the nuclear receptor Nr5a2 compromises expansion of the cumulus oophorus but not fertilization by intracytoplasmic sperm injection. Biol Reprod 96:1231–1243

    Article  PubMed  Google Scholar 

  77. Godin P, Tsoi MF, Morin M, Gevry N, Boerboom D (2022) The granulosa cell response to luteinizing hormone is partly mediated by YAP1-dependent induction of amphiregulin. Cell Commun Signal 20:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jeppesen JV et al (2012) LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab 97:E1524–E1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang H et al (2019) HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge. Nat Commun 10:5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ji SY et al (2017) The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse. Mol Hum Reprod 23:698–707

    Article  CAS  PubMed  Google Scholar 

  81. Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244

    CAS  PubMed  Google Scholar 

  82. Jamnongjit M, Gill A, Hammes SR (2005) Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci USA 102:16257–16262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Noma N et al (2011) LH-induced neuregulin 1 (NRG1) type III transcripts control granulosa cell differentiation and oocyte maturation. Mol Endocrinol 25:104–116

    Article  CAS  PubMed  Google Scholar 

  84. Kitasaka H, Kawai T, Hoque SAM, Umehara T, Fujita Y, Shimada M (2018) Inductions of granulosa cell luteinization and cumulus expansion are dependent on the fibronectin-integrin pathway during ovulation process in mice. PLoS ONE 13:e0192458

    Article  PubMed  PubMed Central  Google Scholar 

  85. Prochazka R, Petlach M, Nagyova E, Nemcova L (2011) Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Reproduction 141:425–435

    Article  CAS  PubMed  Google Scholar 

  86. Ben-Ami I, Armon L, Freimann S, Strassburger D, Ron-El R, Amsterdam A (2009) EGF-like growth factors as LH mediators in the human corpus luteum. Hum Reprod 24:176–184

    Article  CAS  PubMed  Google Scholar 

  87. Negishi H, Ikeda C, Nagai Y, Satoh A, Kumasako Y, Makinoda S, Ustunomiya T (2007) Regulation of amphiregulin, EGFR-like factor expression by hCG in cultured human granulosa cells. Acta Obstet Gynecol Scand 86:706–710

    Article  PubMed  Google Scholar 

  88. Fang L, Yu Y, Zhang R, He J, Sun YP (2016) Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Sci Rep 6:24917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fang L et al (2019) Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Hum Reprod 34:2018–2026

    Article  CAS  PubMed  Google Scholar 

  90. Conti M, Andersen CB, Richard F, Mehats C, Chun SY, Horner K, Jin C, Tsafriri A (2002) Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol 187:153–159

    Article  CAS  PubMed  Google Scholar 

  91. Jones KT (2004) Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol Hum Reprod 10:1–5

    Article  CAS  PubMed  Google Scholar 

  92. Conti M, Hsieh M, Zamah AM, Oh JS (2012) Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol 356:65–73

    Article  CAS  PubMed  Google Scholar 

  93. Prochazka R, Blaha M, Nemcova L (2012) Signaling pathways regulating FSH- and amphiregulin-induced meiotic resumption and cumulus cell expansion in the pig. Reproduction 144:535–546

    Article  CAS  PubMed  Google Scholar 

  94. Vaccari S, Weeks JL 2nd, Hsieh M, Menniti FS, Conti M (2009) Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod 81:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Norris RP, Freudzon M, Nikolaev VO, Jaffe LA (2010) Epidermal growth factor receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to LH. Reproduction 140:655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu X, Xie F, Zamah AM, Cao B, Conti M (2014) Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle. Biol Reprod 91:9

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tsuji T, Kiyosu C, Akiyama K, Kunieda T (2012) CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev 79:795–802

    Article  CAS  PubMed  Google Scholar 

  98. Hsieh M, Thao K, Conti M (2011) Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation. PLoS ONE 6:e21574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Richards JS, Ascoli M (2018) Endocrine, paracrine, and autocrine signaling pathways that regulate ovulation. Trends Endocrinol Metab 29:313–325

    Article  CAS  PubMed  Google Scholar 

  100. Fulop C, Salustri A, Hascall VC (1997) Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus-oocyte complex. Arch Biochem Biophys 337:261–266

    Article  CAS  PubMed  Google Scholar 

  101. Richards JS (2005) Ovulation: new factors that prepare the oocyte for fertilization. Mol Cell Endocrinol 234:75–79

    Article  CAS  PubMed  Google Scholar 

  102. Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS (2003) Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem 278:42330–42339

    Article  CAS  PubMed  Google Scholar 

  103. Reizel Y, Elbaz J, Dekel N (2010) Sustained activity of the EGF receptor is an absolute requisite for LH-induced oocyte maturation and cumulus expansion. Mol Endocrinol 24:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fang L, Cheng JC, Chang HM, Sun YP, Leung PC (2013) EGF-like growth factors induce COX-2-derived PGE2 production through ERK1/2 in human granulosa cells. J Clin Endocrinol Metab 98:4932–4941

    Article  CAS  PubMed  Google Scholar 

  105. Tamura M, Sasano H, Suzuki T, Fukaya T, Funayama Y, Takayama K, Takaya R, Yajima A (1995) Expression of epidermal growth factors and epidermal growth factor receptor in normal cycling human ovaries. Hum Reprod 10:1891–1896

    Article  CAS  PubMed  Google Scholar 

  106. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    Article  CAS  PubMed  Google Scholar 

  107. Devoto L, Henriquez S, Kohen P, Strauss JF 3rd (2017) The significance of estradiol metabolites in human corpus luteum physiology. Steroids 123:50–54

    Article  CAS  PubMed  Google Scholar 

  108. Practice Committee of the American Society for Reproductive Medicine. Electronic address, A.a.o., Practice Committee of the American Society for Reproductive, M (2016) Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril 106:1634–1647

    Article  Google Scholar 

  109. McClure N, Healy DL, Rogers PA, Sullivan J, Beaton L, Haning RV Jr, Connolly DT, Robertson DM (1994) Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet 344:235–236

    Article  CAS  PubMed  Google Scholar 

  110. Nishi Y et al (2001) Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 142:437–445

    Article  CAS  PubMed  Google Scholar 

  111. Karakida S, Kawano Y, Utsunomiya Y, Furukawa Y, Sasaki T, Narahara H (2011) Effect of heparin-binding EGF-like growth factor and amphiregulin on the MAP kinase-induced production of vascular endothelial growth factor by human granulosa cells. Growth Factors 29:271–277

    Article  CAS  PubMed  Google Scholar 

  112. Fang L, Yu Y, Li Y, Wang S, He J, Zhang R, Sun YP (2019) Upregulation of AREG, EGFR, and HER2 contributes to increased VEGF expression in granulosa cells of patients with OHSSdagger. Biol Reprod 101:426–432

    Article  PubMed  Google Scholar 

  113. Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11:53–62

    Article  CAS  PubMed  Google Scholar 

  114. Haimov-Kochman R et al (2005) Expression and regulation of Sprouty-2 in the granulosa-lutein cells of the corpus luteum. Mol Hum Reprod 11:537–542

    Article  CAS  PubMed  Google Scholar 

  115. Cheng JC, Fang L, Chang HM, Sun YP, Leung PC (2016) hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS. Sci Rep 6:31675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang B, Li J, Yang Q, Zhang F, Hao M, Guo Y (2017) Decreased levels of sRAGE in follicular fluid from patients with PCOS. Reproduction 153:285–292

    Article  CAS  PubMed  Google Scholar 

  117. Wang B, Wang J, Liu Y, Wang L, Du M, Zhang Z, Guan Y (2021) sRAGE downregulates the VEGF expression in OHSS ovarian granulosa cells. Gynecol Endocrinol 37:836–840

    Article  CAS  PubMed  Google Scholar 

  118. McCartney CR, Marshall JC (2016) CLINICAL PRACTICE. polycystic ovary syndrome. N Engl J Med 375:54–64

    Article  PubMed  PubMed Central  Google Scholar 

  119. Haouzi D, Assou S, Monzo C, Vincens C, Dechaud H, Hamamah S (2012) Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome. Hum Reprod 27:3523–3530

    Article  CAS  PubMed  Google Scholar 

  120. Ouandaogo ZG, Frydman N, Hesters L, Assou S, Haouzi D, Dechaud H, Frydman R, Hamamah S (2012) Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum Reprod 27:2438–2447

    Article  CAS  PubMed  Google Scholar 

  121. Patil K, Shinde G, Hinduja I, Mukherjee S (2022) Compromised cumulus-oocyte complex matrix organization and expansion in women with PCOS. Reprod Sci 29:836–848

    Article  CAS  PubMed  Google Scholar 

  122. Ambekar AS et al (2015) Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J Clin Endocrinol Metab 100:744–753

    Article  CAS  PubMed  Google Scholar 

  123. Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M (2014) Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod 20:49–58

    Article  CAS  PubMed  Google Scholar 

  124. Doherty JA, Peres LC, Wang C, Way GP, Greene CS, Schildkraut JM (2017) Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep 4:211–220

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chen VW, Ruiz B, Killeen JL, Cote TR, Wu XC, Correa CN (2003) Pathology and classification of ovarian tumors. Cancer 97:2631–2642

    Article  PubMed  Google Scholar 

  126. Romero I, Bast RC Jr (2012) Minireview: human ovarian cancer: biology, current management, and paths to personalizing therapy. Endocrinology 153:1593–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gurung A, Hung T, Morin J, Gilks CB (2013) Molecular abnormalities in ovarian carcinoma: clinical, morphological and therapeutic correlates. Histopathology 62:59–70

    Article  PubMed  Google Scholar 

  128. Lassus H, Sihto H, Leminen A, Joensuu H, Isola J, Nupponen NN, Butzow R (2006) Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J Mol Med (Berl) 84:671–681

    Article  CAS  PubMed  Google Scholar 

  129. Yagi H et al (2005) Clinical significance of heparin-binding epidermal growth factor-like growth factor in peritoneal fluid of ovarian cancer. Br J Cancer 92:1737–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carvalho S et al (2016) An antibody to amphiregulin, an abundant growth factor in patients’ fluids, inhibits ovarian tumors. Oncogene 35:438–447

    Article  CAS  PubMed  Google Scholar 

  131. Yotsumoto F et al (2008) Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 365:555–561

    Article  CAS  PubMed  Google Scholar 

  132. Tanaka Y et al (2005) Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 11:4783–4792

    Article  CAS  PubMed  Google Scholar 

  133. Tung SL et al (2017) miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 6:e326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bolitho C, Moscova M, Baxter RC, Marsh DJ (2021) Amphiregulin increases migration and proliferation of epithelial ovarian cancer cells by inducing its own expression via PI3-kinase signaling. Mol Cell Endocrinol 533:111338

    Article  CAS  PubMed  Google Scholar 

  135. So WK, Fan Q, Lau MT, Qiu X, Cheng JC, Leung PC (2014) Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression. FEBS Lett 588:3998–4007

    Article  CAS  PubMed  Google Scholar 

  136. Cheng JC, Chang HM, Xiong S, So WK, Leung PC (2016) Sprouty2 inhibits amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells. Oncotarget 7:81645–81660

    Article  PubMed  PubMed Central  Google Scholar 

  137. So WK, Cheng JC, Liu Y, Xu C, Zhao J, Chang VT, Leung PC (2016) Sprouty4 mediates amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells. Tumour Biol 37:9197–9207

    Article  CAS  PubMed  Google Scholar 

  138. Qiu X, Cheng JC, Klausen C, Fan Q, Chang HM, So WK, Leung PC (2015) Transforming growth factor-alpha induces human ovarian cancer cell invasion by down-regulating E-cadherin in a Snail-independent manner. Biochem Biophys Res Commun 461:128–135

    Article  CAS  PubMed  Google Scholar 

  139. Cai H, Xu Y (2013) The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 11:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Panupinthu N et al (2014) Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene 33:2846–2856

    Article  CAS  PubMed  Google Scholar 

  141. Lindzen M et al (2021) Targeting autocrine amphiregulin robustly and reproducibly inhibits ovarian cancer in a syngeneic model: roles for wildtype p53. Oncogene 40:3665–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Casamassimi A, De Luca A, Agrawal S, Stromberg K, Salomon DS, Normanno N (2000) EGF-related antisense oligonucleotides inhibit the proliferation of human ovarian carcinoma cells. Ann Oncol 11:319–325

    Article  CAS  PubMed  Google Scholar 

  143. Fauser BC (2019) Towards the global coverage of a unified registry of IVF outcomes. Reprod Biomed Online 38:133–137

    Article  PubMed  Google Scholar 

  144. Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, Conti M (2010) Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod 25:2569–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu N, Ma Y, Li R, Jin H, Li M, Huang X, Feng HL, Qiao J (2012) Comparison of follicular fluid amphiregulin and EGF concentrations in patients undergoing IVF with different stimulation protocols. Endocrine 42:708–716

    Article  CAS  PubMed  Google Scholar 

  146. Huang Y, Zhao Y, Yu Y, Li R, Lin S, Zhang C, Liu P, Qiao J (2015) Altered amphiregulin expression induced by diverse luteinizing hormone receptor reactivity in granulosa cells affects IVF outcomes. Reprod Biomed Online 30:593–601

    Article  CAS  PubMed  Google Scholar 

  147. Alyasin A, Mehdinejadiani S, Ghasemi M (2016) GnRH agonist trigger versus hCG trigger in GnRH antagonist in IVF/ICSI cycles: a review article. Int J Reprod Biomed 14:557–566

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Humaidan P, Westergaard LG, Mikkelsen AL, Fukuda M, Yding Andersen C (2011) Levels of the epidermal growth factor-like peptide amphiregulin in follicular fluid reflect the mode of triggering ovulation: a comparison between gonadotrophin-releasing hormone agonist and urinary human chorionic gonadotrophin. Fertil Steril 95:2034–2038

    Article  CAS  PubMed  Google Scholar 

  149. Haas J, Ophir L, Barzilay E, Yerushalmi GM, Yung Y, Kedem A, Maman E, Hourvitz A (2014) GnRH agonist vs. hCG for triggering of ovulation–differential effects on gene expression in human granulosa cells. PLoS ONE 9:e90359

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lin MH, Wu FS, Lee RK, Li SH, Lin SY, Hwu YM (2013) Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles. Fertil Steril 100:1296–1302

    Article  CAS  PubMed  Google Scholar 

  151. Haas J, Ophir L, Barzilay E, Machtinger R, Yung Y, Orvieto R, Hourvitz A (2016) Standard human chorionic gonadotropin versus double trigger for final oocyte maturation results in different granulosa cells gene expressions: a pilot study. Fertil Steril 106:653-659 e1

    Article  CAS  PubMed  Google Scholar 

  152. Practice Committees of the American Society for Reproductive Medicine, t.S.o.R.B., Technologists and the Society for Assisted Reproductive Technology. Electronic address, j.a.o (2021) In vitro maturation: a committee opinion. Fertil Steril 115:298–304

    Article  Google Scholar 

  153. Krisher RL (2022) Present state and future outlook for the application of in vitro oocyte maturation in human infertility treatment. Biol Reprod 106:235–242

    Article  PubMed  Google Scholar 

  154. Vuong LN et al (2020) In-vitro maturation of oocytes versus conventional IVF in women with infertility and a high antral follicle count: a randomized non-inferiority controlled trial. Hum Reprod 35:2537–2547

    Article  CAS  PubMed  Google Scholar 

  155. Yang H et al (2021) Factors influencing the in vitro maturation (IVM) of human oocyte. Biomedicines 9:1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kind KL, Banwell KM, Gebhardt KM, Macpherson A, Gauld A, Russell DL, Thompson JG (2013) Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus-oocyte complexes. Reprod Fertil Dev 25:426–438

    Article  CAS  PubMed  Google Scholar 

  157. Nyholt de Prada JK, Lee YS, Latham KE, Chaffin CL, VandeVoort CA (2009) Role for cumulus cell-produced EGF-like ligands during primate oocyte maturation in vitro. Am J Physiol Endocrinol Metab 296:E1049–E1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guzman L, Adriaenssens T, Ortega-Hrepich C, Albuz FK, Mateizel I, Devroey P, De Vos M, Smitz J (2013) Human antral follicles <6 mm: a comparison between in vivo maturation and in vitro maturation in non-hCG primed cycles using cumulus cell gene expression. Mol Hum Reprod 19:7–16

    Article  CAS  PubMed  Google Scholar 

  159. Richani D, Sutton-McDowall ML, Frank LA, Gilchrist RB, Thompson JG (2014) Effect of epidermal growth factor-like peptides on the metabolism of in vitro- matured mouse oocytes and cumulus cells. Biol Reprod 90:49

    Article  PubMed  Google Scholar 

  160. Peluffo MC, Ting AY, Zamah AM, Conti M, Stouffer RL, Zelinski MB, Hennebold JD (2012) Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Hum Reprod 27:2430–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ben-Ami I, Komsky A, Bern O, Kasterstein E, Komarovsky D, Ron-El R (2011) In vitro maturation of human germinal vesicle-stage oocytes: role of epidermal growth factor-like growth factors in the culture medium. Hum Reprod 26:76–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by operating grants from the National Natural Science Foundation of China to Jung-Chien Cheng (32170868) and Lanlan Fang (32070848). This work was also supported by the International (Regional) Cooperation and Exchange Projects (81820108016) from the National Natural Science Foundation of China to Ying-Pu Sun. All figures were created with BioRender.com. We have been granted a license to use all figures in journal publications.

Funding

Funding was provided by National Natural Science Foundation of China (Grant nos. 32170868, 32070848, and 81820108016).

Author information

Authors and Affiliations

Authors

Contributions

JCC and LF wrote the manuscript and prepared the figures and tables. YPS reviewed and provided suggestions for the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jung-Chien Cheng.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Sun, YP. & Cheng, JC. The role of amphiregulin in ovarian function and disease. Cell. Mol. Life Sci. 80, 60 (2023). https://doi.org/10.1007/s00018-023-04709-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04709-8

Keywords

Navigation