Skip to main content

Advertisement

Log in

How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Simpson RA, Mayhew TM, Barnes PR (1992) From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta 13:501–512. https://doi.org/10.1016/0143-4004(92)90055-x

    Article  CAS  PubMed  Google Scholar 

  2. Ellery PM, Cindrova-Davies T, Jauniaux E et al (2009) Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 30:329–334. https://doi.org/10.1016/j.placenta.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9:1091. https://doi.org/10.3389/fphys.2018.01091

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ji L, Brkić J, Liu M et al (2013) Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 34:981–1023. https://doi.org/10.1016/j.mam.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  5. Soares MJ, Varberg KM, Iqbal K (2018) Hemochorial placentation: development, function, and adaptations. Biol Reprod 99:196–211. https://doi.org/10.1093/biolre/ioy049

    Article  PubMed  PubMed Central  Google Scholar 

  6. Turco MY, Moffett A (2019) Development of the human placenta. Development 146:dev163428. https://doi.org/10.1242/dev.163428

    Article  CAS  PubMed  Google Scholar 

  7. Aplin JD (2010) Developmental cell biology of human villous trophoblast: current research problems. Int J Dev Biol 54:323–329. https://doi.org/10.1387/ijdb.082759ja

    Article  PubMed  Google Scholar 

  8. Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy. https://doi.org/10.1155/2012/179827

    Article  PubMed  PubMed Central  Google Scholar 

  9. Enders AC (1989) Trophoblast differentiation during the transition from trophoblastic plate to lacunar stage of implantation in the rhesus monkey and human. Am J Anat 186:85–98. https://doi.org/10.1002/aja.1001860107

    Article  CAS  PubMed  Google Scholar 

  10. James JL, Carter AM, Chamley LW (2012) Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation? Placenta 33:327–334. https://doi.org/10.1016/j.placenta.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  11. Karvas RM, McInturf S, Zhou J et al (2020) Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1 and ACTC1 as markers of early first trimester human trophoblast. Mol Hum Reprod 26:425–440. https://doi.org/10.1093/molehr/gaaa029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. West RC, Ming H, Logsdon DM et al (2019) Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc Natl Acad Sci U S A 116:22635–22644. https://doi.org/10.1073/pnas.1911362116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Renaud SJ, Karim Rumi MA, Soares MJ (2011) Review: genetic manipulation of the rodent placenta. Placenta 32(Suppl 2):S130-135. https://doi.org/10.1016/j.placenta.2010.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21:27–43. https://doi.org/10.1038/s41576-019-0169-4

    Article  CAS  PubMed  Google Scholar 

  15. Soncin F, Khater M, To C et al (2018) Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development. https://doi.org/10.1242/dev.156273

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baines KJ, Renaud SJ (2017) Transcription factors that regulate trophoblast development and function. Prog Mol Biol Transl Sci 145:39–88. https://doi.org/10.1016/bs.pmbts.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  17. Gupta SK, Malhotra SS, Malik A et al (2016) Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. Am J Reprod Immunol N Y N 1989 75:361–371. https://doi.org/10.1111/aji.12436

    Article  Google Scholar 

  18. Langbein M, Strick R, Strissel PL et al (2008) Impaired cytotrophoblast cell-cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev 75:175–183. https://doi.org/10.1002/mrd.20729

    Article  CAS  PubMed  Google Scholar 

  19. Roland CS, Hu J, Ren C-E et al (2016) Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci CMLS 73:365–376. https://doi.org/10.1007/s00018-015-2069-x

    Article  CAS  PubMed  Google Scholar 

  20. Choi S, Khan T, Roberts RM, Schust DJ (2022) leveraging optimized transcriptomic and personalized stem cell technologies to better understand syncytialization defects in preeclampsia. Front Genet 13:872818. https://doi.org/10.3389/fgene.2022.872818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaremek A, Jeyarajah MJ, Jaju Bhattad G, Renaud SJ (2021) Omics approaches to study formation and function of human placental syncytiotrophoblast. Front Cell Dev Biol 9:674162. https://doi.org/10.3389/fcell.2021.674162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miller RK, Genbacev O, Turner MA et al (2005) Human placental explants in culture: approaches and assessments. Placenta 26:439–448. https://doi.org/10.1016/j.placenta.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Okae H, Toh H, Sato T et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22:50-63.e6. https://doi.org/10.1016/j.stem.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Haider S, Meinhardt G, Saleh L et al (2018) Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11:537–551. https://doi.org/10.1016/j.stemcr.2018.07.004

    Article  CAS  Google Scholar 

  25. Turco MY, Gardner L, Kay RG et al (2018) Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564:263–281. https://doi.org/10.1038/s41586-018-0753-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bai T, Peng C-Y, Aneas I et al (2021) Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Res 56:102507. https://doi.org/10.1016/j.scr.2021.102507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L-J, Chen C-P, Lee Y-S et al (2022) Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation. Nat Commun 13:1626. https://doi.org/10.1038/s41467-022-29312-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu RH, Chen X, Li DS et al (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264. https://doi.org/10.1038/nbt761

    Article  CAS  PubMed  Google Scholar 

  29. Amita M, Adachi K, Alexenko AP et al (2013) Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1303094110

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Z, Kurosawa O, Iwata H (2019) Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther 10:245. https://doi.org/10.1186/s13287-019-1339-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong C, Beltcheva M, Gontarz P et al (2020) Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife. https://doi.org/10.7554/eLife.52504

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo G, Stirparo GG, Strawbridge SE et al (2021) Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.02.025

    Article  PubMed  PubMed Central  Google Scholar 

  33. Io S, Kabata M, Iemura Y et al (2021) Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.013

    Article  PubMed  Google Scholar 

  34. Wei Y, Wang T, Ma L et al (2021) Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells. Sci Adv 7:eabf4416. https://doi.org/10.1126/sciadv.abf4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kagawa H, Javali A, Khoei HH et al (2022) Human blastoids model blastocyst development and implantation. Nature 601:600–605. https://doi.org/10.1038/s41586-021-04267-8

    Article  CAS  PubMed  Google Scholar 

  36. Pattillo RA, Gey GO (1968) The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res 28(7):1231–1236

    CAS  PubMed  Google Scholar 

  37. Borges M, Bose P, Frank HG et al (2003) A two-colour fluorescence assay for the measurement of syncytial fusion between trophoblast-derived cell lines. Placenta 24:959–964. https://doi.org/10.1016/S0143-4004(03)00173-5

    Article  CAS  PubMed  Google Scholar 

  38. Rothbauer M, Patel N, Gondola H et al (2017) A comparative study of five physiological key parameters between four different human trophoblast-derived cell lines. Sci Rep. https://doi.org/10.1038/s41598-017-06364-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV (2019) How cells fuse. J Cell Biol 218:1436–1451. https://doi.org/10.1083/jcb.201901017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lavialle C, Cornelis G, Dupressoir A et al (2013) Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc B Biol Sci 368:20120507. https://doi.org/10.1098/rstb.2012.0507

    Article  CAS  Google Scholar 

  41. Blond JL, Lavillette D, Cheynet V et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329. https://doi.org/10.1128/jvi.74.7.3321-3329.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Esnault C, Priet S, Ribet D et al (2008) A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci 105:17532–17537. https://doi.org/10.1073/pnas.0807413105

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blaise S, de Parseval N, Bénit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci 100:13013–13018. https://doi.org/10.1073/pnas.2132646100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mallet F, Bouton O, Prudhomme S et al (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci 101:1731–1736. https://doi.org/10.1073/pnas.0305763101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dupressoir A, Vernochet C, Bawa O et al (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106:12127–12132. https://doi.org/10.1073/pnas.0902925106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dupressoir A, Vernochet C, Harper F et al (2011) A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci 108:E1164–E1173. https://doi.org/10.1073/pnas.1112304108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Parseval N, Diop G, Blaise S et al (2005) Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes. BMC Genom 6:117. https://doi.org/10.1186/1471-2164-6-117

    Article  CAS  Google Scholar 

  48. Vargas A, Moreau J, Landry S et al (2009) Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392:301–318. https://doi.org/10.1016/j.jmb.2009.07.025

    Article  CAS  PubMed  Google Scholar 

  49. Mangeney M, Renard M, Schlecht-Louf G et al (2007) Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci 104:20534–20539. https://doi.org/10.1073/pnas.0707873105

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gerbaud P, Pidoux G (2015) Review: An overview of molecular events occurring in human trophoblast fusion. Placenta 36(Suppl 1):S35-42. https://doi.org/10.1016/j.placenta.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  51. Cheynet V, Ruggieri A, Oriol G et al (2005) Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 79:5585–5593. https://doi.org/10.1128/JVI.79.9.5585-5593.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen C-P, Chen L-F, Yang S-R et al (2008) Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 79:815–823. https://doi.org/10.1095/biolreprod.108.069765

    Article  CAS  PubMed  Google Scholar 

  53. Zhou Z, Zhang Q, Lu X et al (2013) The proprotein convertase furin is required for trophoblast syncytialization. Cell Death Dis 4:e593. https://doi.org/10.1038/cddis.2013.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morosin SK, Delforce SJ, Corbisier de Meaultsart C et al (2021) FURIN and placental syncytialisation: a cautionary tale. Cell Death Dis 12:635. https://doi.org/10.1038/s41419-021-03898-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheynet V, Oriol G, Mallet F (2006) Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3:41. https://doi.org/10.1186/1742-4690-3-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gong R, Peng X, Kang S et al (2005) Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W. Biochem Biophys Res Commun 331:1193–1200. https://doi.org/10.1016/j.bbrc.2005.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roberts RM, Ezashi T, Schulz LC et al (2021) Syncytins expressed in human placental trophoblast. Placenta. https://doi.org/10.1016/j.placenta.2021.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yabe S, Alexenko AP, Amita M et al (2016) Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc Natl Acad Sci 113:E2598–E2607. https://doi.org/10.1073/pnas.1601630113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Esnault C, Cornelis G, Heidmann O, Heidmann T (2013) Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLOS Genet 9:e1003400. https://doi.org/10.1371/journal.pgen.1003400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sugimoto J, Sugimoto M, Bernstein H et al (2013) A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 3:1462. https://doi.org/10.1038/srep01462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sugimoto J, Choi S, Sheridan MA et al (2021) Could the human endogenous retrovirus-derived syncytialization inhibitor, suppressyn, limit heterotypic cell fusion events in the decidua? Int J Mol Sci 22:10259. https://doi.org/10.3390/ijms221910259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whitlock JM, Chernomordik LV (2021) Flagging fusion: Phosphatidylserine signaling in cell–cell fusion. J Biol Chem 296:100411. https://doi.org/10.1016/j.jbc.2021.100411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Das M, Xu B, Lin L et al (2004) Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 25:396–407. https://doi.org/10.1016/j.placenta.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  64. Katsuragawa H, Kanzaki H, Inoue T et al (1997) Monoclonal antibody against phosphatidylserine inhibits in vitro human trophoblastic hormone production and invasion. Biol Reprod 56:50–58. https://doi.org/10.1095/biolreprod56.1.50

    Article  CAS  PubMed  Google Scholar 

  65. Žigon P, Perdan Pirkmajer K, Tomšič M et al (2015) Anti-Phosphatidylserine/prothrombin antibodies are associated with adverse pregnancy outcomes. J Immunol Res. https://doi.org/10.1155/2015/975704

    Article  PubMed  PubMed Central  Google Scholar 

  66. Riddell M, Lowen B, Jiang Y et al (2013) Pleiotropic actions of Forskolin result in phosphatidylserine exposure in primary trophoblasts. PLoS ONE 8:e81273. https://doi.org/10.1371/journal.pone.0081273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Le T, Grabau R et al (2020) TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. Sci Adv 6:310. https://doi.org/10.1126/sciadv.aba0310

    Article  CAS  Google Scholar 

  68. Ochiai Y, Suzuki C, Segawa K et al (2022) Inefficient development of syncytiotrophoblasts in the Atp11a-deficient mouse placenta. Proc Natl Acad Sci 119:e2200582119. https://doi.org/10.1073/pnas.2200582119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carmeille R, Degrelle SA, Plawinski L et al (2015) Annexin-A5 promotes membrane resealing in human trophoblasts. Biochim Biophys Acta BBA Mol Cell Res 1853:2033–2044. https://doi.org/10.1016/j.bbamcr.2014.12.038

    Article  CAS  Google Scholar 

  70. Ducat A, Couderc B, Bouter A et al (2020) Molecular mechanisms of trophoblast dysfunction mediated by imbalance between STOX1 isoforms. iScience 23:101086. https://doi.org/10.1016/j.isci.2020.101086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Degrelle SA, Gerbaud P, Leconte L et al (2017) Annexin-A5 organized in 2D-network at the plasmalemma eases human trophoblast fusion. Sci Rep 7:42173. https://doi.org/10.1038/srep42173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huppertz B, Tews DS, Kaufmann P (2001) Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle. Int Rev Cytol 205:215–253. https://doi.org/10.1016/s0074-7696(01)05005-7

    Article  CAS  PubMed  Google Scholar 

  73. Fradet S, Pierredon S, Ribaux P et al (2012) Involvement of membrane GRP78 in trophoblastic cell fusion. PLoS ONE 7:e40596. https://doi.org/10.1371/journal.pone.0040596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bastida-Ruiz D, Wuillemin C, Pederencino A et al (2020) Activated α2-macroglobulin binding to cell surface GRP78 induces trophoblastic cell fusion. Sci Rep 10:9666. https://doi.org/10.1038/s41598-020-66554-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mansilla M, Wang Y, Lim R et al (2021) HtrA4 is up-regulated during trophoblast syncytialization and BeWo cells fail to syncytialize without HtrA4. Sci Rep 11:14363. https://doi.org/10.1038/s41598-021-93520-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Black S, Kadyrov M, Kaufmann P et al (2004) Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 11:90–98. https://doi.org/10.1038/sj.cdd.4401307

    Article  CAS  PubMed  Google Scholar 

  77. Guilbert LJ, Riddell M, Winkler-Lowen B (2010) Caspase activation is not required for villous cytotrophoblast fusion into syncytiotrophoblasts. Placenta 31:982–988. https://doi.org/10.1016/j.placenta.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  78. Pidoux G, Gerbaud P, Gnidehou S et al (2010) ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol-Cell Physiol 298:C1517–C1526. https://doi.org/10.1152/ajpcell.00484.2008

    Article  CAS  PubMed  Google Scholar 

  79. Katsuno T, Umeda K, Matsui T et al (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19:2465–2475. https://doi.org/10.1091/mbc.e07-12-1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aplin JD, Jones CJP, Harris LK (2009) Adhesion molecules in human trophoblast—a review. I. Villous trophoblast. Placenta 30:293–298. https://doi.org/10.1016/j.placenta.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  81. Sivasubramaniyam T, Garcia J, Tagliaferro A et al (2013) where polarity meets fusion: role of Par6 in trophoblast differentiation during placental development and preeclampsia. Endocrinology 154:1296–1309. https://doi.org/10.1210/en.2012-1823

    Article  CAS  PubMed  Google Scholar 

  82. Frendo J-L, Cronier L, Bertin G et al (2003) Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci 116:3413–3421. https://doi.org/10.1242/jcs.00648

    Article  CAS  PubMed  Google Scholar 

  83. Cronier L, Frendo J-L, Defamie N et al (2003) Requirement of gap junctional intercellular communication for human villous trophoblast differentiation1. Biol Reprod 69:1472–1480. https://doi.org/10.1095/biolreprod.103.016360

    Article  CAS  PubMed  Google Scholar 

  84. Dunk CE, Gellhaus A, Drewlo S et al (2012) The molecular role of connexin 43 in human trophoblast cell fusion1. Biol Reprod. https://doi.org/10.1095/biolreprod.111.096925

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pidoux G, Gerbaud P, Dompierre J et al (2014) A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci 127:4172–4185. https://doi.org/10.1242/jcs.149609

    Article  CAS  PubMed  Google Scholar 

  86. Kibschull M, Gellhaus A, Winterhager E (2008) Analogous and unique functions of connexins in mouse and human placental development. Placenta 29:848–854. https://doi.org/10.1016/j.placenta.2008.07.013

    Article  CAS  PubMed  Google Scholar 

  87. Getsios S, Chen GTC, MacCalman CD (2001) α-, β-, γ-catenin, and p120CTN expression during the terminal differentiation and fusion of human mononucleate cytotrophoblasts in vitro and in vivo. Mol Reprod Dev 59:168–177. https://doi.org/10.1002/mrd.1019

    Article  CAS  PubMed  Google Scholar 

  88. Brown LM, Lacey HA, Baker PN, Crocker IP (2005) E-cadherin in the assessment of aberrant placental cytotrophoblast turnover in pregnancies complicated by pre-eclampsia. Histochem Cell Biol 124:499–506. https://doi.org/10.1007/s00418-005-0051-7

    Article  CAS  PubMed  Google Scholar 

  89. Ng YH, Zhu H, Leung PCK (2011) Twist regulates cadherin-mediated differentiation and fusion of human trophoblastic cells. J Clin Endocrinol Metab 96:3881–3890. https://doi.org/10.1210/jc.2010-2714

    Article  CAS  PubMed  Google Scholar 

  90. Butler TM, Elustondo PA, Hannigan GE, MacPhee DJ (2009) Integrin-linked kinase can facilitate syncytialization and hormonal differentiation of the human trophoblast-derived BeWo cell line. Reprod Biol Endocrinol 7:51. https://doi.org/10.1186/1477-7827-7-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aghababaei M, Hogg K, Perdu S et al (2015) ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ 22:1970–1984. https://doi.org/10.1038/cdd.2015.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Coutifaris C, Kao LC, Sehdev HM et al (1991) E-cadherin expression during the differentiation of human trophoblasts. Dev Camb Engl 113:767–777

    CAS  Google Scholar 

  93. Iwahashi N, Ikezaki M, Matsuzaki I et al (2019) Calreticulin regulates syncytialization through control of the synthesis and transportation of E-cadherin in BeWo cells. Endocrinology 160:359–374. https://doi.org/10.1210/en.2018-00868

    Article  CAS  PubMed  Google Scholar 

  94. Ishikawa A, Omata W, Ackerman WE IV et al (2014) Cell fusion mediates dramatic alterations in the actin cytoskeleton, focal adhesions, and E-cadherin in trophoblastic cells. Cytoskeleton 71:241–256. https://doi.org/10.1002/cm.21165

    Article  CAS  PubMed  Google Scholar 

  95. Shibukawa Y, Yamazaki N, Kumasawa K et al (2010) Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion. Mol Biol Cell 21:3973–3984. https://doi.org/10.1091/mbc.E10-03-0261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Getsios S, MacCalman CD (2003) Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro. Dev Biol 257:41–54. https://doi.org/10.1016/s0012-1606(03)00041-1

    Article  CAS  PubMed  Google Scholar 

  97. Prakash GJ, Suman P, Gupta SK (2011) Relevance of syndecan-1 in the trophoblastic BeWo cell syncytialization. Am J Reprod Immunol 66:385–393. https://doi.org/10.1111/j.1600-0897.2011.01017.x

    Article  CAS  PubMed  Google Scholar 

  98. Jeyarajah MJ, Jaju Bhattad G, Kops BF, Renaud SJ (2019) Syndecan-4 regulates extravillous trophoblast migration by coordinating protein kinase C activation. Sci Rep 9:10175. https://doi.org/10.1038/s41598-019-46599-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hassani Lahsinoui H, Amraoui F, Spijkers LJA et al (2021) Soluble syndecan-1 and glycosaminoglycans in preeclamptic and normotensive pregnancies. Sci Rep 11:4387. https://doi.org/10.1038/s41598-021-82972-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gandley RE, Althouse A, Jeyabalan A et al (2016) low soluble syndecan-1 precedes preeclampsia. PLoS ONE 11:e0157608. https://doi.org/10.1371/journal.pone.0157608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szabo S, Xu Y, Romero R et al (2013) Changes of placental syndecan-1 expression in preeclampsia and HELLP syndrome. Virchows Arch Int J Pathol 463:445–458. https://doi.org/10.1007/s00428-013-1426-0

    Article  CAS  Google Scholar 

  102. Than NG, Romero R, Goodman M et al (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A 106:9731–9736. https://doi.org/10.1073/pnas.0903568106

    Article  PubMed  PubMed Central  Google Scholar 

  103. Than NG, Romero R, Kim CJ et al (2012) Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab TEM 23:23–31. https://doi.org/10.1016/j.tem.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  104. Fischer I, Weber M, Kuhn C et al (2011) Is galectin-1 a trigger for trophoblast cell fusion?: the MAP-kinase pathway and syncytium formation in trophoblast tumour cells BeWo. Mol Hum Reprod 17:747–757. https://doi.org/10.1093/molehr/gar053

    Article  CAS  PubMed  Google Scholar 

  105. Hutter S, Morales-Prieto DM, Andergassen U et al (2016) Gal-1 silenced trophoblast tumor cells (BeWo) show decreased syncytium formation and different miRNA production compared to non-target silenced BeWo cells. Cell Adhes Migr 10:28–38. https://doi.org/10.1080/19336918.2015.1089377

    Article  CAS  Google Scholar 

  106. Toudic C, Vargas A, Xiao Y et al (2019) Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans. FASEB J Off Publ Fed Am Soc Exp Biol 33:12873–12887. https://doi.org/10.1096/fj.201900107R

    Article  CAS  Google Scholar 

  107. Dalton P, Christian HC, Redman CWG et al (2007) Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells—implication for placental cell fusion. FEBS J 274:2715–2727. https://doi.org/10.1111/j.1742-4658.2007.05806.x

    Article  CAS  PubMed  Google Scholar 

  108. Kudo Y, Boyd CAR, Millo J et al (2003) Manipulation of CD98 expression affects both trophoblast cell fusion and amino acid transport activity during syncytialization of human placental BeWo cells. J Physiol 550:3–9. https://doi.org/10.1113/jphysiol.2003.040550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ohgaki R, Ohmori T, Hara S et al (2017) Essential roles of L-type amino acid transporter 1 in syncytiotrophoblast development by presenting fusogenic 4F2hc. Mol Cell Biol 37:e00427-e516. https://doi.org/10.1128/MCB.00427-16

    Article  PubMed  PubMed Central  Google Scholar 

  110. Balogh A, Toth E, Romero R et al (2019) Placental galectins are key players in regulating the maternal adaptive immune response. Front Immunol 10:1240. https://doi.org/10.3389/fimmu.2019.01240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Crocker IP, Arthur P, Heazell AE, Baker PN (2007) The mitotic manipulation of cytotrophoblast differentiation in vitro. Placenta 28:408–411. https://doi.org/10.1016/j.placenta.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  112. Forbes K, Westwood M, Baker PN, Aplin JD (2008) Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol-Cell Physiol 294:C1313–C1322. https://doi.org/10.1152/ajpcell.00035.2008

    Article  CAS  PubMed  Google Scholar 

  113. Jiang B, Kamat A, Mendelson CR (2000) Hypoxia prevents induction of aromatase expression in human trophoblast cells in culture: potential inhibitory role of the hypoxia-inducible transcription factor Mash-2 (mammalian achaete-scute homologous protein-2). Mol Endocrinol Baltim Md 14:1661–1673. https://doi.org/10.1210/mend.14.10.0539

    Article  CAS  Google Scholar 

  114. Lu X, Wang R, Zhu C et al (2017) Fine-tuned and cell-cycle-restricted expression of fusogenic protein syncytin-2 maintains functional placental syncytia. Cell Rep 21:1150–1159. https://doi.org/10.1016/j.celrep.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  115. Liu Y, Fan X, Wang R et al (2018) Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 28:819–832. https://doi.org/10.1038/s41422-018-0066-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yagi R, Kohn MJ, Karavanova I et al (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836. https://doi.org/10.1242/dev.010223

    Article  CAS  PubMed  Google Scholar 

  117. Nishioka N, Inoue K, Adachi K et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410. https://doi.org/10.1016/j.devcel.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  118. Saha B, Ganguly A, Home P et al (2020) TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss. Proc Natl Acad Sci 117:17864–17875. https://doi.org/10.1073/pnas.2002449117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Meinhardt G, Haider S, Kunihs V et al (2020) Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci 117:13562–13570. https://doi.org/10.1073/pnas.2002630117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Home P, Kumar RP, Ganguly A et al (2017) Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Dev Camb Engl 144:876–888. https://doi.org/10.1242/dev.145318

    Article  CAS  Google Scholar 

  121. Ishiuchi T, Ohishi H, Sato T, Kamimura S, Yorino M, Abe S, Suzuki A, Wakayama T, Suyama M, Sasaki H (2019) Zfp281 Shapes the transcriptome of trophoblast stem cells and is essential for placental development. Cell Rep 27(6):1742–1754.e6. https://doi.org/10.1016/j.celrep.2019.04.028

    Article  CAS  PubMed  Google Scholar 

  122. Krendl C, Shaposhnikov D, Rishko V et al (2017) GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci 114:E9579–E9588. https://doi.org/10.1073/pnas.1708341114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li Y, Moretto-Zita M, Soncin F et al (2013) BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a ΔNp63+ cytotrophoblast stem cell state. Development 140:3965–3976. https://doi.org/10.1242/dev.092155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li Y, Moretto-Zita M, Leon-Garcia S, Parast MM (2014) p63 inhibits extravillous trophoblast migration and maintains cells in a cytotrophoblast stem cell-like state. Am J Pathol 184:3332–3343. https://doi.org/10.1016/j.ajpath.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jasmer B, Muschol-Steinmetz C, Kreis N-N et al (2017) Involvement of the oncogene B-cell lymphoma 6 in the fusion and differentiation process of trophoblastic cells of the placenta. Oncotarget 8:108643–108654. https://doi.org/10.18632/oncotarget.20586

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hornbachner R, Lackner A, Papuchova H et al (2021) MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2105130118

    Article  PubMed  PubMed Central  Google Scholar 

  127. Janatpour MJ, McMaster MT, Genbacev O et al (2000) Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development 127:549–558. https://doi.org/10.1242/dev.127.3.549

    Article  CAS  PubMed  Google Scholar 

  128. Hemberger M, Udayashankar R, Tesar P et al (2010) ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum Mol Genet 19:2456–2467. https://doi.org/10.1093/hmg/ddq128

    Article  CAS  PubMed  Google Scholar 

  129. Renaud SJ, Chakraborty D, Mason CW et al (2015) OVO-like 1 regulates progenitor cell fate in human trophoblast development. Proc Natl Acad Sci U S A 112:E6175-6184. https://doi.org/10.1073/pnas.1507397112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jeyarajah MJ, Jaju Bhattad G, Hillier DM, Renaud SJ (2020) The transcription factor OVOL2 Represses ID2 and drives differentiation of trophoblast stem cells and placental development in mice. Cells 9:840. https://doi.org/10.3390/cells9040840

    Article  CAS  PubMed Central  Google Scholar 

  131. Jaju Bhattad G, Jeyarajah MJ, McGill MG et al (2020) Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts. Cell Death Dis 11:311. https://doi.org/10.1038/s41419-020-2500-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abell AN, Jordan NV, Huang W et al (2011) MAP3K4/CBP regulated H2B acetylation controls epithelial-mesenchymal transition in trophoblast stem cells. Cell Stem Cell 8:525–537. https://doi.org/10.1016/j.stem.2011.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang C-W, Cheong M-L, Chang G-D et al (2013) Involvement of Epac1/Rap1/CaMKI/HDAC5 signaling cascade in the regulation of placental cell fusion. Mol Hum Reprod 19:745–755. https://doi.org/10.1093/molehr/gat050

    Article  CAS  PubMed  Google Scholar 

  134. Chuang H-C, Chang C-W, Chang G-D et al (2006) Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34:1459–1469. https://doi.org/10.1093/nar/gkl048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Genbacev O, McMaster MT, Fisher SJ (2000) A Repertoire of cell cycle regulators whose expression is coordinated with human cytotrophoblast differentiation. Am J Pathol 157:1337–1351. https://doi.org/10.1016/S0002-9440(10)64648-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. De Falco M, Fedele V, Cobellis L et al (2004) Pattern of expression of cyclin D1/CDK4 complex in human placenta during gestation. Cell Tissue Res 317:187–194. https://doi.org/10.1007/s00441-004-0880-z

    Article  CAS  PubMed  Google Scholar 

  137. Korgun ET, Celik-Ozenci C, Acar N et al (2006) Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem Cell Biol 125:615–624. https://doi.org/10.1007/s00418-006-0160-y

    Article  CAS  PubMed  Google Scholar 

  138. Ullah R, Dar S, Ahmad T et al (2018) CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin. Placenta 66:57–64. https://doi.org/10.1016/j.placenta.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  139. Song H-L, Liu T-H, Wang Y-H et al (2021) Appropriate expression of P57kip2 drives trophoblast fusion via cell cycle arrest. Reprod Camb Engl 161:633–644. https://doi.org/10.1530/REP-20-0638

    Article  CAS  Google Scholar 

  140. Takahashi K, Kobayashi T, Kanayama N (2000) p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod 6:1019–1025. https://doi.org/10.1093/molehr/6.11.1019

    Article  CAS  PubMed  Google Scholar 

  141. Ullah Z, Kohn MJ, Yagi R et al (2008) Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 22:3024–3036. https://doi.org/10.1101/gad.1718108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kreis N-N, Friemel A, Jennewein L et al (2021) Functional analysis of p21Cip1/CDKN1A and its family members in trophoblastic cells of the placenta and its roles in preeclampsia. Cells 10:2214. https://doi.org/10.3390/cells10092214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Racca AC, Ridano ME, Camolotto S et al (2015) A novel regulator of human villous trophoblast fusion: the Krüppel-like factor 6. Mol Hum Reprod 21:347–358. https://doi.org/10.1093/molehr/gau113

    Article  CAS  PubMed  Google Scholar 

  144. Miranda AL, Racca AC, Kourdova LT et al (2022) Krüppel-like factor 6 (KLF6) requires its amino terminal domain to promote villous trophoblast cell fusion. Placenta 117:139–149. https://doi.org/10.1016/j.placenta.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  145. Chuprin A, Gal H, Biron-Shental T et al (2013) Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 27:2356–2366. https://doi.org/10.1101/gad.227512.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cox LS, Redman C (2017) The role of cellular senescence in ageing of the placenta. Placenta 52:139–145. https://doi.org/10.1016/j.placenta.2017.01.116

    Article  CAS  PubMed  Google Scholar 

  147. Anson-Cartwright L, Dawson K, Holmyard D et al (2000) The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25:311–314. https://doi.org/10.1038/77076

    Article  CAS  PubMed  Google Scholar 

  148. Hughes M, Dobric N, Scott IC et al (2004) The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells. Dev Biol 271:26–37. https://doi.org/10.1016/j.ydbio.2004.03.029

    Article  CAS  PubMed  Google Scholar 

  149. Schubert SW, Lamoureux N, Kilian K et al (2008) Identification of integrin-α4, Rb1, and syncytin A as murine placental target genes of the transcription factor GCMa/Gcm1. J Biol Chem 283:5460–5465. https://doi.org/10.1074/jbc.M710110200

    Article  CAS  PubMed  Google Scholar 

  150. Bainbridge SA, Minhas A, Whiteley KJ et al (2012) Effects of reduced Gcm1 expression on trophoblast morphology, fetoplacental vascularity, and pregnancy outcomes in mice. Hypertension 59:732–739. https://doi.org/10.1161/HYPERTENSIONAHA.111.183939

    Article  CAS  PubMed  Google Scholar 

  151. Baczyk D, Satkunaratnam A, Nait-Oumesmar B et al (2004) Complex patterns of GCM1 mRNA and protein in villous and extravillous trophoblast cells of the human placenta. Placenta 25:553–559. https://doi.org/10.1016/j.placenta.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  152. Wu Y-H, Lo H-F, Chen S-H, Chen H (2013) Caspase-14 suppresses GCM1 acetylation and inhibits placental cell differentiation. FASEB J 27:2818–2828. https://doi.org/10.1096/fj.12-224279

    Article  CAS  PubMed  Google Scholar 

  153. Kohli S, Hoffmann J, Lochmann F et al (2017) p45 NF-E2 regulates syncytiotrophoblast differentiation by post-translational GCM1 modifications in human intrauterine growth restriction. Cell Death Dis 8:e2730. https://doi.org/10.1038/cddis.2017.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Baczyk D, Kibschull M, Mellstrom B et al (2013) DREAM mediated regulation of GCM1 in the human placental trophoblast. PLoS ONE 8:e51837. https://doi.org/10.1371/journal.pone.0051837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kumar P, Luo Y, Tudela C et al (2013) The c-myc-regulated microRNA-17 ̃92 (mir-17 ̃92) and miR-106a ̃363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol 33:1782–1796. https://doi.org/10.1128/MCB.01228-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yang C-S, Yu C, Chuang H-C et al (2005) FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J Biol Chem 280:10083–10090. https://doi.org/10.1074/jbc.M413986200

    Article  CAS  PubMed  Google Scholar 

  157. Chou C-C, Chang C, Liu J-H et al (2007) Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing drosophila homolog a. J Biol Chem 282:27239–27249. https://doi.org/10.1074/jbc.M700351200

    Article  CAS  PubMed  Google Scholar 

  158. Zhang M, Muralimanoharan S, Wortman AC, Mendelson CR (2016) Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc Natl Acad Sci 113:E7069–E7076. https://doi.org/10.1073/pnas.1607849113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Walker OS, Ragos R, Wong MK et al (2020) Reactive oxygen species from mitochondria impacts trophoblast fusion and the production of endocrine hormones by syncytiotrophoblasts. PLoS ONE 15:e0229332. https://doi.org/10.1371/journal.pone.0229332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chiang M-H, Liang F-Y, Chen C-P et al (2009) Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia. J Biol Chem 284:17411–17419. https://doi.org/10.1074/jbc.M109.016170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang H-L, Liang N, Huang D-X et al (2021) The effects of high-density lipoprotein and oxidized high-density lipoprotein on forskolin-induced syncytialization of BeWo cells. Placenta 103:199–205. https://doi.org/10.1016/j.placenta.2020.10.024

    Article  CAS  PubMed  Google Scholar 

  162. Lin F-Y, Chang C-W, Cheong M-L et al (2011) Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation. Nucleic Acids Res 39:848–861. https://doi.org/10.1093/nar/gkq838

    Article  CAS  PubMed  Google Scholar 

  163. Baczyk D, Drewlo S, Proctor L et al (2009) Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ 16:719–727. https://doi.org/10.1038/cdd.2009.1

    Article  CAS  PubMed  Google Scholar 

  164. Yu C, Shen K, Lin M et al (2002) GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068. https://doi.org/10.1074/jbc.M209316200

    Article  CAS  PubMed  Google Scholar 

  165. Chang M, Mukherjea D, Gobble RM et al (2008) Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biol Reprod 78:841–851. https://doi.org/10.1095/biolreprod.107.065599

    Article  CAS  PubMed  Google Scholar 

  166. Yamada K, Ogawa H, Honda S et al (1999) A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem 274:32279–32286. https://doi.org/10.1074/jbc.274.45.32279

    Article  CAS  PubMed  Google Scholar 

  167. Armistead B, Kadam L, Siegwald E et al (2021) Induction of the PPARγ (Peroxisome Proliferator-Activated Receptor γ)-GCM1 (Glial Cell Missing 1) syncytialization axis reduces sFLT1 (Soluble fms-Like Tyrosine Kinase 1) in the preeclamptic placenta. Hypertension 78:230–240. https://doi.org/10.1161/HYPERTENSIONAHA.121.17267

    Article  CAS  PubMed  Google Scholar 

  168. Toufaily C, Lokossou AG, Vargas A et al (2015) A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model. PLoS ONE 10:e0121468. https://doi.org/10.1371/journal.pone.0121468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ghosh D, Sachdev S, Hannink M, Roberts RM (2005) Coordinate regulation of basal and cyclic 5′-adenosine monophosphate (cAMP)-activated expression of human chorionic gonadotropin-α by Ets-2 and cAMP-responsive element binding protein. Mol Endocrinol 19:1049–1066. https://doi.org/10.1210/me.2004-0320

    Article  CAS  PubMed  Google Scholar 

  170. Zhou Z, Wang R, Yang X et al (2014) The cAMP-responsive element binding protein (CREB) transcription factor regulates furin expression during human trophoblast syncytialization. Placenta 35:907–918. https://doi.org/10.1016/j.placenta.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  171. Depoix C, Tee MK, Taylor RN (2011) Molecular regulation of human placental growth factor (PlGF) Gene expression in placental villi and trophoblast cells is mediated via the protein kinase A pathway. Reprod Sci 18:219–228. https://doi.org/10.1177/1933719110389337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schubert SW, Abendroth A, Kilian K et al (2008) bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells. Nucleic Acids Res 36:3834–3846. https://doi.org/10.1093/nar/gkn306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chang C-W, Chuang H-C, Yu C et al (2005) Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol 25:8401–8414. https://doi.org/10.1128/MCB.25.19.8401-8414.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Richardson BD, Cheng Y-H, Langland RA, Handwerger S (2001) Differential expression of AP-2γ and AP-2α during human trophoblast differentiation. Life Sci 69:2157–2165. https://doi.org/10.1016/S0024-3205(01)01299-1

    Article  CAS  PubMed  Google Scholar 

  175. Hubert MA, Sherritt SL, Bachurski CJ, Handwerger S (2010) Involvement of transcription factor NR2F2 in human trophoblast differentiation. PLoS ONE 5:e9417. https://doi.org/10.1371/journal.pone.0009417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kessler CA, Stanek JW, Stringer KF, Handwerger S (2015) ETS1 induces human trophoblast differentiation. Endocrinology 156:1851–1859. https://doi.org/10.1210/en.2014-1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cheng Y-H, Aronow BJ, Hossain S et al (2004) Critical role for transcription factor AP-2α in human trophoblast differentiation. Physiol Genom 18:99–107. https://doi.org/10.1152/physiolgenomics.00181.2003

    Article  Google Scholar 

  178. Kamat A, Alcorn JL, Kunczt C, Mendelson CR (1998) Characterization of the regulatory regions of the human aromatase (P450arom) gene involved in placenta-specific expression. Mol Endocrinol Baltim Md 12:1764–1777. https://doi.org/10.1210/mend.12.11.0190

    Article  CAS  Google Scholar 

  179. Piao YS, Peltoketo H, Vihko P, Vihko R (1997) The proximal promoter region of the gene encoding human 17beta-hydroxysteroid dehydrogenase type 1 contains GATA, AP-2, and Sp1 response elements: analysis of promoter function in choriocarcinoma cells. Endocrinology 138:3417–3425. https://doi.org/10.1210/endo.138.8.5329

    Article  CAS  PubMed  Google Scholar 

  180. Pena P, Reutens AT, Albanese C et al (1999) Activator protein-2 mediates transcriptional activation of the CYP11A1 gene by interaction with Sp1 rather than binding to DNA. Mol Endocrinol Baltim Md 13:1402–1416. https://doi.org/10.1210/mend.13.8.0335

    Article  CAS  Google Scholar 

  181. Cheng Y-H, Handwerger S (2002) AP-2alpha modulates human corticotropin-releasing hormone gene expression in the placenta by direct protein-protein interaction. Mol Cell Endocrinol 191:127–136. https://doi.org/10.1016/s0303-7207(02)00081-3

    Article  CAS  PubMed  Google Scholar 

  182. Monkley SJ, Delaney SJ, Pennisi DJ et al (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Dev Camb Engl 122:3343–3353

    CAS  Google Scholar 

  183. Ishikawa T, Tamai Y, Zorn AM et al (2001) Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Dev Camb Engl 128:25–33

    CAS  Google Scholar 

  184. Galceran J, Fariñas I, Depew MJ et al (1999) Wnt3a-/–like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev 13:709–717. https://doi.org/10.1101/gad.13.6.709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Parr BA, Cornish VA, Cybulsky MI, McMahon AP (2001) Wnt7b regulates placental development in mice. Dev Biol 237:324–332. https://doi.org/10.1006/dbio.2001.0373

    Article  CAS  PubMed  Google Scholar 

  186. Matsuura K, Jigami T, Taniue K et al (2011) Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway. Nat Commun 2:548. https://doi.org/10.1038/ncomms1551

    Article  CAS  PubMed  Google Scholar 

  187. Aoki M, Mieda M, Ikeda T et al (2007) R-spondin3 is required for mouse placental development. Dev Biol 301:218–226. https://doi.org/10.1016/j.ydbio.2006.08.018

    Article  CAS  PubMed  Google Scholar 

  188. Lu J, Zhang S, Nakano H et al (2013) A positive feedback loop involving Gcm1 and Fzd5 directs chorionic branching morphogenesis in the placenta. PLoS Biol 11:e1001536. https://doi.org/10.1371/journal.pbio.1001536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sonderegger S, Husslein H, Leisser C, Knöfler M (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28(Suppl A):S97-102. https://doi.org/10.1016/j.placenta.2006.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Muralimanoharan S, Kwak Y-T, Mendelson CR (2018) Redox-sensitive transcription factor NRF2 enhances trophoblast differentiation via induction of miR-1246 and aromatase. Endocrinology 159:2022–2033. https://doi.org/10.1210/en.2017-03024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Knöfler M, Pollheimer J (2013) Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 4:190. https://doi.org/10.3389/fgene.2013.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang Q, Fujii H, Knipp GT (2002) Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 23:661–671. https://doi.org/10.1053/plac.2002.0855

    Article  CAS  PubMed  Google Scholar 

  193. Barak Y, Nelson MC, Ong ES et al (1999) PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595. https://doi.org/10.1016/S1097-2765(00)80209-9

    Article  CAS  PubMed  Google Scholar 

  194. Parast MM, Yu H, Ciric A et al (2009) PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation. PLoS ONE 4:e8055. https://doi.org/10.1371/journal.pone.0008055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Duan SZ, Ivashchenko CY, Whitesall SE et al (2007) Hypotension, lipodystrophy, and insulin resistance in generalized PPARγ-deficient mice rescued from embryonic lethality. J Clin Invest 117:812–822. https://doi.org/10.1172/JCI28859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schaiff WT, Carlson MG, Smith SD et al (2000) Peroxisome proliferator-activated receptor-γ modulates differentiation of human trophoblast in a ligand-specific manner. J Clin Endocrinol Metab 85:3874–3881. https://doi.org/10.1210/jcem.85.10.6885

    Article  CAS  PubMed  Google Scholar 

  197. Tarrade A, Schoonjans K, Guibourdenche J et al (2001) PPARγ/RXRα heterodimers are involved in human CGβ synthesis and human trophoblast differentiation. Endocrinology 142:4504–4514. https://doi.org/10.1210/endo.142.10.8448

    Article  CAS  PubMed  Google Scholar 

  198. Schaiff WT, Bildirici I, Cheong M et al (2005) Peroxisome proliferator-activated receptor-γ and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J Clin Endocrinol Metab 90:4267–4275. https://doi.org/10.1210/jc.2004-2265

    Article  CAS  PubMed  Google Scholar 

  199. Levytska K, Drewlo S, Baczyk D, Kingdom J (2014) PPAR-γ regulates trophoblast differentiation in the BeWo cell model. PPAR Res. https://doi.org/10.1155/2014/637251

    Article  PubMed  PubMed Central  Google Scholar 

  200. Liu F, Rouault C, Guesnon M et al (2020) Comparative study of PPARγ targets in human extravillous and villous cytotrophoblasts. PPAR Res 2020:e9210748. https://doi.org/10.1155/2020/9210748

    Article  CAS  Google Scholar 

  201. Ruebner M, Langbein M, Strissel PL et al (2012) Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J Cell Biochem 113:2383–2396. https://doi.org/10.1002/jcb.24110

    Article  CAS  PubMed  Google Scholar 

  202. Tarrade A, Rochette-Egly C, Guibourdenche J, Evain-Brion D (2000) The expression of nuclear retinoid receptors in human implantation. Placenta 21:703–710. https://doi.org/10.1053/plac.2000.0568

    Article  CAS  PubMed  Google Scholar 

  203. Wendling O, Chambon P, Mark M (1999) Retinoid X receptors are essential for early mouse development Land placentogenesis. Proc Natl Acad Sci U S A 96:547–551. https://doi.org/10.1073/pnas.96.2.547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sapin V, Dollé P, Hindelang C et al (1997) Defects of the chorioallantoic placenta in mouse RXRα null fetuses. Dev Biol 191:29–41. https://doi.org/10.1006/dbio.1997.8687

    Article  CAS  PubMed  Google Scholar 

  205. Stephanou A, Sarlis NJ, Richards R, Handwerger S (1994) Expression of retinoic acid receptor subtypes and cellular retinoic acid binding protein-II mRNAs during differentiation of human trophoblast cells. Biochem Biophys Res Commun 202:772–780. https://doi.org/10.1006/bbrc.1994.1997

    Article  CAS  PubMed  Google Scholar 

  206. Guibourdenche J, Roulier S, Rochette-Egly C, Evain-Brion D (1998) High retinoid X receptor expression in JEG-3 choriocarcinoma cells: involvement in cell function modulation by retinoids. J Cell Physiol 176:595–601. https://doi.org/10.1002/(SICI)1097-4652(199809)176:3%3c595::AID-JCP16%3e3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  207. Zhu D, Hölz S, Metzger E et al (2014) Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun 5:3174. https://doi.org/10.1038/ncomms4174

    Article  CAS  PubMed  Google Scholar 

  208. Milano-Foster J, Ray S, Home P et al (2019) Regulation of human trophoblast syncytialization by histone demethylase LSD1. J Biol Chem 294:17301–17313. https://doi.org/10.1074/jbc.RA119.010518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cheng Y-H, Handwerger S (2005) A placenta-specific enhancer of the human syncytin gene. Biol Reprod 73:500–509. https://doi.org/10.1095/biolreprod.105.039941

    Article  CAS  PubMed  Google Scholar 

  210. Lai T-C, Li H-F, Li Y-S et al (2017) Proximal GATA-binding sites are essential for human HSD3B1 gene transcription in the placenta. Sci Rep 7:4271. https://doi.org/10.1038/s41598-017-04133-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Viger RS, Guittot SM, Anttonen M et al (2008) Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 22:781–798. https://doi.org/10.1210/me.2007-0513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Paul S, Home P, Bhattacharya B, Ray S (2017) GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta 60:S61–S66. https://doi.org/10.1016/j.placenta.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Morasso MI, Grinberg A, Robinson G et al (1999) Placental failure in mice lacking the homeobox gene Dlx3. Proc Natl Acad Sci U S A 96:162–167. https://doi.org/10.1073/pnas.96.1.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Clark PA, Brown JL, Li S et al (2012) Distal-less 3 haploinsufficiency results in elevated placental oxidative stress and altered fetal growth kinetics in the mouse. Placenta 33:830–838. https://doi.org/10.1016/j.placenta.2012.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Li S, Roberson MS (2017) Dlx3 and GCM-1 functionally coordinate the regulation of placental growth factor in human trophoblast-derived cells. J Cell Physiol 232:2900–2914. https://doi.org/10.1002/jcp.25752

    Article  CAS  PubMed  Google Scholar 

  216. Chui A, Evseenko DA, Brennecke SP et al (2011) Homeobox gene Distal-less 3 (DLX3) is a regulator of villous cytotrophoblast differentiation. Placenta 32:745–751. https://doi.org/10.1016/j.placenta.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  217. Chui A, Tay C, Cocquebert M et al (2012) Homeobox gene Distal-less 3 is a regulator of villous cytotrophoblast differentiation and its expression is increased in human idiopathic foetal growth restriction. J Mol Med Berl Ger 90:273–284. https://doi.org/10.1007/s00109-011-0836-1

    Article  CAS  Google Scholar 

  218. Li S, Roberson MS (2017) DLX3 interacts with GCM1 and inhibits its transactivation-stimulating activity in a homeodomain-dependent manner in human trophoblast-derived cells. Sci Rep 7:2009. https://doi.org/10.1038/s41598-017-02120-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chiu Y-H, Yang M-R, Wang L-J et al (2018) New insights into the regulation of placental growth factor gene expression by the transcription factors GCM1 and DLX3 in human placenta. J Biol Chem 293:9801–9811. https://doi.org/10.1074/jbc.RA117.001384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lu R, Yang A, Jin Y (2011) Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem 286:8425–8436. https://doi.org/10.1074/jbc.M110.202150

    Article  CAS  PubMed  Google Scholar 

  221. Lv B, An Q, Zeng Q et al (2019) Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol 17:e3000187. https://doi.org/10.1371/journal.pbio.3000187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Knöfler M, Haider S, Saleh L et al (2019) Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 76:3479–3496. https://doi.org/10.1007/s00018-019-03104-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Keryer G, Alsat E, Taskén K, Evain-Brion D (1998) Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci 111(7):995–1004. https://doi.org/10.1242/jcs.111.7.995

    Article  CAS  PubMed  Google Scholar 

  224. Delidaki M, Gu M, Hein A et al (2011) Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol 332:213–220. https://doi.org/10.1016/j.mce.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  225. Beal R, Alonso-Carriazo Fernandez A, Grammatopoulos DK et al (2021) ARHGEF18/p114RhoGEF coordinates PKA/CREB signaling and actomyosin remodeling to promote trophoblast cell-cell fusion during placenta morphogenesis. Front Cell Dev Biol 9:646. https://doi.org/10.3389/fcell.2021.658006

    Article  Google Scholar 

  226. Yoshie M, Kaneyama K, Kusama K et al (2010) Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod Oxf Engl 25:2229–2238. https://doi.org/10.1093/humrep/deq190

    Article  CAS  Google Scholar 

  227. Kusama K, Bai R, Imakawa K (2018) Regulation of human trophoblast cell syncytialization by transcription factors STAT5B and NR4A3. J Cell Biochem 119:4918–4927. https://doi.org/10.1002/jcb.26721

    Article  CAS  PubMed  Google Scholar 

  228. Knerr I, Schubert SW, Wich C et al (2005) Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett 579:3991–3998. https://doi.org/10.1016/j.febslet.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  229. Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25:9063–9072. https://doi.org/10.1128/MCB.25.20.9063-9072.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lazennec G, Canaple L, Saugy D, Wahli W (2000) Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol Endocrinol Baltim Md 14:1962–1975

    Article  CAS  Google Scholar 

  231. Collett GP, Goh XF, Linton EA et al (2012) RhoE is regulated by cyclic AMP and promotes fusion of human BeWo choriocarcinoma cells. PLoS ONE 7:e30453. https://doi.org/10.1371/journal.pone.0030453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Orendi K, Gauster M, Moser G et al (2010) The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reprod Camb Engl 140:759–766. https://doi.org/10.1530/REP-10-0221

    Article  CAS  Google Scholar 

  233. Chang C-W, Chang G-D, Chen H (2011) A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Mol Cell Biol 31:3820–3831. https://doi.org/10.1128/MCB.05582-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Daoud G, Amyot M, Rassart É et al (2005) ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta. J Physiol 566:409–423. https://doi.org/10.1113/jphysiol.2005.089326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Johnstone ED, Sibley CP, Lowen B, Guilbert LJ (2005) Epidermal growth factor stimulation of trophoblast differentiation requires MAPK11/14 (p38 MAP kinase) activation. Biol Reprod 73:1282–1288. https://doi.org/10.1095/biolreprod.105.044206

    Article  CAS  PubMed  Google Scholar 

  236. Shu Q, Li W, Li J et al (2014) Cross-talk between cAMP and MAPK pathways in HSD11B2 induction by hCG in placental trophoblasts. PLoS ONE 9:e107938. https://doi.org/10.1371/journal.pone.0107938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ge YC, Li JN, Ni XT et al (2011) Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts. Reproduction 142:369–375. https://doi.org/10.1530/REP-11-0053

    Article  CAS  PubMed  Google Scholar 

  238. Schild RL, Sonnenberg-Hirche CM, Schaiff WT et al (2006) The kinase p38 regulates peroxisome proliferator activated receptor-gamma in human trophoblasts. Placenta 27:191–199. https://doi.org/10.1016/j.placenta.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  239. Nadeau V, Charron J (2014) Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Dev Camb Engl 141:2825–2837. https://doi.org/10.1242/dev.107409

    Article  CAS  Google Scholar 

  240. Mudgett JS, Ding J, Guh-Siesel L et al (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 97:10454–10459. https://doi.org/10.1073/pnas.180316397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Omata W, Ackerman WE, Vandre DD, Robinson JM (2013) Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways. PLoS ONE 8:e81003. https://doi.org/10.1371/journal.pone.0081003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yasui Y, Yamada K, Takahashi S et al (2012) PMA induces GCMa phosphorylation and alters its stability via the PKC- and ERK-dependent pathway. Biochem Biophys Res Commun 417:1127–1132. https://doi.org/10.1016/j.bbrc.2011.12.059

    Article  CAS  PubMed  Google Scholar 

  243. Bhattacharya B, Home P, Ganguly A et al (2020) Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal–fetal exchange interface. Proc Natl Acad Sci 117:14280–14291. https://doi.org/10.1073/pnas.1920201117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Malhotra SS, Banerjee P, Gupta SK (2016) Regulation of trophoblast differentiation during embryo implantation and placentation: Implications in pregnancy complications. J Reprod Health Med 2:S26–S36. https://doi.org/10.1016/j.jrhm.2016.10.007

    Article  Google Scholar 

  245. Duan F-M, Fu L-J, Wang Y-H et al (2020) THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 8:353–363. https://doi.org/10.1016/j.gendis.2020.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Liu J, Shao X, Qin W et al (2021) Quantitative chemoproteomics reveals O-GlcNAcylation of cystathionine γ-lyase (CSE) represses trophoblast syncytialization. Cell Chem Biol 28:788-801.e5. https://doi.org/10.1016/j.chembiol.2021.01.024

    Article  CAS  PubMed  Google Scholar 

  247. Muroi Y, Sakurai T, Hanashi A et al (2009) CD9 regulates transcription factor GCM1 and ERVWE1 expression through the cAMP/protein kinase A signaling pathway. Reprod Camb Engl 138:945–951. https://doi.org/10.1530/REP-09-0082

    Article  CAS  Google Scholar 

  248. Shi QJ, Lei ZM, Rao CV, Lin J (1993) Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 132:1387–1395. https://doi.org/10.1210/endo.132.3.7679981

    Article  CAS  PubMed  Google Scholar 

  249. Parameshwar PK, Sagrillo-Fagundes L, Fournier C et al (2021) Disease-specific extracellular matrix composition regulates placental trophoblast fusion efficiency. Biomater Sci 9:7247–7256. https://doi.org/10.1039/d1bm00799h

    Article  CAS  PubMed  Google Scholar 

  250. Chang C-W, Wakeland AK, Parast MM (2018) Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol 236:R43–R56. https://doi.org/10.1530/JOE-17-0402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Horii M, Morey R, Bui T et al (2021) Modeling preeclampsia using human induced pluripotent stem cells. Sci Rep 11:5877. https://doi.org/10.1038/s41598-021-85230-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tunyalux Langsub for illustrative assistance.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC 5053, to SJR). MJJ was supported by an Alexander Graham Bell Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

SJR and MJJ wrote, edited, and revised the manuscript.

Corresponding author

Correspondence to Stephen J. Renaud.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests or conflicts to disclose.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, S.J., Jeyarajah, M.J. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell. Mol. Life Sci. 79, 433 (2022). https://doi.org/10.1007/s00018-022-04475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04475-z

Keywords

Navigation