Skip to main content

Advertisement

Log in

The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): looking beyond the cerebellum

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 1 (SCA1) is one of nine polyglutamine (polyQ) diseases and is characterized as an adult late-onset, progressive, dominantly inherited genetic disease. SCA1 is caused by an increase in the number of CAG repeats in the ATXN1 gene leading to an expanded polyQ tract in the ATAXIN-1 protein. ATAXIN-1 is broadly expressed throughout the brain. However, until recently, SCA1 research has primarily centered on the cerebellum, given the characteristic cerebellar Purkinje cell loss observed in patients, as well as the progressive motor deficits, including gait and limb incoordination, that SCA1 patients present with. There are, however, also other symptoms such as respiratory problems, cognitive defects and memory impairment, anxiety, and depression observed in SCA1 patients and mouse models, which indicate that there are extra-cerebellar effects of SCA1 that cannot be explained solely through changes in the cerebellar region of the brain alone. The existing gap between human and mouse model studies of extra-cerebellar regions in SCA1 makes it difficult to answer many important questions in the field. This review will cover both the cerebellar and extra-cerebellar effects of SCA1 and highlight the need for further investigations into the impact of mutant ATXN1 expression in these regions. This review will also discuss implications of extra-cerebellar effects not only for SCA1 but other neurodegenerative diseases showing diverse pathology as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

SCA1:

Spinocerebellar ataxia type 1

CAG:

Cytosine-adenine-guanine

polyQ:

Polyglutamine

SCAs:

Spinocerebellar ataxias

MRI:

Magnetic resonance imaging

CNS:

Central nervous system

CIC:

Capicua

RBMs:

RNA binding motif proteins

PC:

Purkinje cell

CCAS:

Cerebellar cognitive affective syndrome

WT:

Wild-type

Tg:

Transgenic

Pcp2:

Purkinje cell protein 2

KI:

Knock-in

PHQ:

Patient Health Questionnaire

KO:

Knock-out

ASO:

Antisense oligonucleotide

CMAP:

Compound motor action potential

SGL:

Subgranular layer

NIs:

Nuclear inclusions

CA1:

Cornu Ammonis 1

CA2:

Cornu Ammonis 1

GM:

Gray matter

WM:

White matter

SCA2:

Spinocerebellar ataxia type 2

SCA3:

Spinocerebellar ataxia type 3

HD:

Huntington’s disease

TFs:

Transcription factors

NLS:

Nuclear localization signal

SAR:

Self-association region

References

  1. Orr HT, Chung MYI, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  CAS  PubMed  Google Scholar 

  2. Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, Spinocerebellar ataxia type 1. J Biol Chem 284:7425–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183

    Article  PubMed  Google Scholar 

  4. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Spinocerebellar Ataxias 3:291–304

    Google Scholar 

  5. Ranum LPW, Chung MY, Banfi S, Bryer A, Schut LJ, Ramesar R et al (1994) Molecular and clinical correlations in spinocerebellar ataxia type I: Evidence for familial effects on the age at onset. Am J Hum Genet 55:244–252

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Matilla T, Volpini V, Genis D, Rosell J, Corral J, Davalos A et al (1993) Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet 2:2123–2128

    Article  CAS  PubMed  Google Scholar 

  7. Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S et al (2008) Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 23:2232–2238

    Article  PubMed  Google Scholar 

  8. Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H et al (1995) Analysis of spinocerebellar ataxia type 1 (sca1)-related cag trinucleotide expansion in japan. Neurology 45:1587–1594

    Article  CAS  PubMed  Google Scholar 

  9. Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, Kononova S et al (1996) Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol 39:500–506

    Article  CAS  PubMed  Google Scholar 

  10. Burright EN, Brent Clark H, Servadio A, Matilla T, Feddersen RM, Yunis WS et al (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–948

    Article  CAS  PubMed  Google Scholar 

  11. Zoghbi HY, Orr HT (1995) Spinocerebellar ataxia type 1. Cell Biol 6:29–35

    CAS  Google Scholar 

  12. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M et al (2013) Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136:905–917

    Article  PubMed  Google Scholar 

  13. Koscik TR, Sloat L, van der Plas E, Joers JM, Deelchand DK, Lenglet C et al (2020) Brainstem and striatal volume changes are detectable in under 1 year and predict motor decline in spinocerebellar ataxia type 1. Brain Commun 2:1–13

    Article  CAS  Google Scholar 

  14. Martins Junior CR, Martinez ARM, Vasconcelos IF, de Rezende TJR, Casseb RF, Pedroso JL et al (2018) Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 265:2949–2959. https://doi.org/10.1007/s00415-018-9087-1

    Article  PubMed  Google Scholar 

  15. Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, Zoghbi HY (1995) Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 10:94–98

    Article  CAS  PubMed  Google Scholar 

  16. Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat Rev Neurosci 18:613–626. https://doi.org/10.1038/nrn.2017.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orr HT (2012) Cell biology of spinocerebellar ataxia. J Cell Biol 197:167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE et al (2008) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452:713–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD et al (2006) ATAXIN-1 interacts with the repressor capicua in its native complex to cause SCA1 neuropathology. Cell 127:1335–1347

    Article  CAS  PubMed  Google Scholar 

  20. Nitschke L, Coffin SL, Xhako E, El-Najjar DB, Orengo JP, Alcala E et al (2021) Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight [Internet] 6. https://insight.jci.org/articles/view/144955

  21. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB et al (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutarnine- induced disease in SCA1 transgenic mice. Cell 95:41–53

    Article  CAS  PubMed  Google Scholar 

  22. Genis D, Matilla T, Volpini V, Rosell J, Dávalos A, Ferrer I et al (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45:24–30

    Article  CAS  PubMed  Google Scholar 

  23. Robitaille Y, Schut L, Kish SJ (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90:572–581

    Article  CAS  PubMed  Google Scholar 

  24. Gilman S, Sima AAF, Junck L, Kluin KJ, Koeppe RA, Lohman ME et al (1996) Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann Neurol 39:241–255. http://doi.wiley.com/10.1002/ana.410390214

  25. Haines DE, Dietrichs E (2012) The cerebellum— structure and connections. Handb Clin Neurol. https://doi.org/10.1016/B978-0-444-51892-7.00001-2

    Article  PubMed  Google Scholar 

  26. Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K et al (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34:905–919

    Article  CAS  PubMed  Google Scholar 

  27. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493

    Article  CAS  PubMed  Google Scholar 

  28. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I et al (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250:207–211

    Article  PubMed  Google Scholar 

  29. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S et al (2013) Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol 260:3134–3143

    Article  PubMed  Google Scholar 

  30. Ma J, Wu C, Lei J, Zhang X (2014) Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med 7:5765–5771

    PubMed  PubMed Central  Google Scholar 

  31. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P (2016) A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis 11:1–9. https://doi.org/10.1186/s13023-016-0447-6

    Article  Google Scholar 

  32. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U et al (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bürk K (2007) Cognition in hereditary ataxia. Cerebellum 6:280–286

    Article  PubMed  Google Scholar 

  34. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  35. Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY et al (2020) Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet 29:117–131

    Article  CAS  PubMed  Google Scholar 

  36. Banfi S, Servadio A, Chung MY, Capozzoli F, Duvick LA, Elde R et al (1996) Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Sca1). Hum Mol Genet 5:33–40

    Article  CAS  PubMed  Google Scholar 

  37. Orengo JP, Nitschke L, van der Heijden ME, Ciaburri NA, Orr HT, Zoghbi HY (2022) Reduction of mutant ATXN1 rescues premature death in a conditional SCA1 mouse model. JCI Insight

  38. Luo L, Wang J, Lo RY, Figueroa KP, Pulst SM, Kuo PH et al (2017) The initial symptom and motor progression in spinocerebellar ataxias. Cerebellum 16:615–622

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y et al (1998) Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol 43:297–302

    Article  CAS  PubMed  Google Scholar 

  40. Diallo A, Jacobi H, Schmitz-Hübsch T, Cook A, Labrum R, Durr A et al (2017) Body Mass Index decline is related to spinocerebellar ataxia disease progression. Mov Disord Clin Pract 4:689–697

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abe K, Kameya T, Tobita M, Konno H, Itoyama Y (1996) Molecular and clinical analysis on muscle wasting in patients with spinocerebellar ataxia type 1. Muscle Nerve 19:900–902

    Article  CAS  PubMed  Google Scholar 

  42. Flurkey K, Currer J, Harrison DE (2006) The mouse in biomedical research. In: Fox J, Barthold S, Davisson M, Newcomer C, Quimby F, Smith A (eds) Norm biol husbandry model, 2nd edn. Elsevier, Amsterdam, p 645

    Google Scholar 

  43. Orengo JP, van der Heijden ME, Hao S, Tang J, Orr HT, Zoghbi HY (2018) Motor neuron degeneration correlates with respiratory dysfunction in SCA1. Dis Model Mech. https://doi.org/10.1242/dmm.032623

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C et al (2016) Depression and clinical progression in spinocerebellar ataxias. Park Relat Disord 22:87–92. https://doi.org/10.1016/j.parkreldis.2015.11.021

    Article  Google Scholar 

  45. Kroenke K, Spitzer RL, Williams JBW (2001) The PHQ-9: Validity of a brief depression severity measure. J Gen Intern Med 16:606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A et al (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26:870–876

    Article  PubMed  Google Scholar 

  47. Bürk K, Bösch S, Globas C, Zühlke C, Daum I, Klockgether T et al (2001) Executive dysfunction in spinocerebellar ataxia type 1. Eur Neurol 46:43–48

    Article  PubMed  Google Scholar 

  48. Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T et al (2020) Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep 10:1–14

    Article  Google Scholar 

  49. Rüb U, Bürk K, Timmann D, den Dunnen W, Seidel K, Farrag K et al (2012) Spinocerebellar ataxia type 1 (SCA1): New pathoanatomical and clinico-pathological insights. Neuropathol Appl Neurobiol 38:665–680

    Article  PubMed  Google Scholar 

  50. Seidel K, Siswanto S, Brunt ERP, Den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21

    Article  CAS  PubMed  Google Scholar 

  51. Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y et al (2017) Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 26:3362–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hekman KE, Gomez CM (2015) The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry 86:554–561. http://www.ncbi.nlm.nih.gov/pubmed/25136055

  53. Maas RPPWM, Van Gaalen J, Klockgether T, Van De Warrenburg BPC (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85:96–103

    Article  PubMed  Google Scholar 

  54. Cvetanovic M, Ingram M, Orr H, Opal P (2015) Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 289:289–299. https://linkinghub.elsevier.com/retrieve/pii/S0306452215000159

  55. Shiwaku H, Yoshimura N, Tamura T, Sone M, Ogishima S, Watase K et al (2010) Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J 29:2446–2460. https://doi.org/10.1038/emboj.2010.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shiwaku H, Yagishita S, Eishi Y, Okazawa H (2013) Bergmann glia are reduced in spinocerebellar ataxia type 1. NeuroReport 24:620–625

    Article  CAS  PubMed  Google Scholar 

  57. Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C et al (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127:1785–1795

    Article  CAS  PubMed  Google Scholar 

  58. Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F et al (1996) Autosomal dominant cerebellar ataxia type I Clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 119:1497–1505. https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/119.5.1497

  59. Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C et al (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168. https://doi.org/10.1016/j.neuroimage.2009.07.027

    Article  PubMed  Google Scholar 

  60. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    Article  CAS  PubMed  Google Scholar 

  61. Deelchand DK, Joers JM, Ravishankar A, Lyu T, Emir UE, Hutter D et al (2019) Sensitivity of volumetric magnetic resonance imaging and magnetic resonance spectroscopy to progression of spinocerebellar ataxia type 1. Mov Disord Clin Pract 6:549–558

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rüb U, Bürk K, Schöls L, Brunt ER, De Vos RAI, Orozco Diaz G et al (2004) Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology 63:1258–1263

    Article  PubMed  Google Scholar 

  63. Adachi M, Kawanami T, Ohshima H, Hosoya T (2006) Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology 48:8–13

    Article  CAS  PubMed  Google Scholar 

  64. Driessen TM, Lee PJ, Lim J (2018) Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. Elife 7:1–32

    Article  Google Scholar 

  65. Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Wagener C, Duvick L et al (2018) Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI insight. https://doi.org/10.1172/jci.insight.123193

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee W, Lavery L, Rousseaux MWC, Rutledge EB, Jang Y, Wan Y et al (2021) Dual targeting of brain region-specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO J 40:1–22

    Article  Google Scholar 

  67. Martins CR, Martinez ARM, de Rezende TJR, Branco LMT, Pedroso JL, Barsottini OGP et al (2017) Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum 16:792–796

    Article  PubMed  Google Scholar 

  68. Takechi Y, Mieda T, Iizuka A, Toya S, Suto N, Takagishi K et al (2013) Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice. Neurosci Lett 535:67–72. https://doi.org/10.1016/j.neulet.2012.12.057

    Article  CAS  PubMed  Google Scholar 

  69. Nicaise C, Putatunda R, Hala TJ, Regan KA, Frank DM, Brion JP et al (2012) Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice. J Neurotrauma 29:2748–2760

    Article  PubMed  PubMed Central  Google Scholar 

  70. Finsterer J, Grisold W (2015) Disorders of the lower cranial nerves. J Neurosci Rural Pract 6:377–391

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kawai Y, Suenaga M, Sobue GHW (2009) Cognitive impairment in spinocerebellar degeneration. Eur Neurol 61:257–268

    Article  CAS  PubMed  Google Scholar 

  72. Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V et al (2019) Loss of ataxin-1 potentiates Alzheimer’s pathogenesis by elevating cerebral BACE1 transcription. Cell 178:1159-1175.e17. https://doi.org/10.1016/j.cell.2019.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spalding KL, Bergmann O, Alkass K, Bernard S, Huttner HB, Westerlund I et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bird CM, Burgess N (2008) The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci 9:182–194

    Article  CAS  PubMed  Google Scholar 

  75. Hatanaka Y, Watase K, Wada K, Nagai Y (2015) Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep 5:1–5

    Article  Google Scholar 

  76. Cvetanovic M, Hu YS, Opal P (2017) Mutant ataxin-1 inhibits neural progenitor cell proliferation in SCA1. Cerebellum 16:340–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rakic P (1998) Young neurons for old brains? Nat Neurosci 1:645–647

    Article  CAS  PubMed  Google Scholar 

  78. Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M (2016) Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience 322:54–65. https://doi.org/10.1016/j.neuroscience.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  79. Matute C, Ransom BR (2012) Roles of white matter in central nervous system pathophysiologies. ASN Neuro 4:89–101

    Article  Google Scholar 

  80. Della NR, Ginestroni A, Tessa C, Salvatore E, De Grandis D, Plasmati R et al (2008) Brain white matter damage in SCA1 and SCA2 An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage 43:10–19

    Article  Google Scholar 

  81. Nakayama T, Nakayama K, Takahashi Y, Ohkubo K, Tobe H, Soma M et al (2001) Case of spinocerebellar ataxia type 1 showing high intensity lesions in the frontal white matter on T2-weighted magnetic resonance images. Med Sci Monit 7:299–303

    CAS  PubMed  Google Scholar 

  82. Pulst S, Nechiporuk A, Nechiporuk T, Gispert S, Chen X, Lopes-cendes I et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276

    Article  CAS  PubMed  Google Scholar 

  83. Kawaguchi Y, Okamoto T, Taniwakil M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  CAS  PubMed  Google Scholar 

  84. Paulson H (2012) Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 103:437–449

    Article  PubMed  PubMed Central  Google Scholar 

  85. Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J (2017) Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol 8:472

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  CAS  PubMed  Google Scholar 

  87. Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J et al (1996) Expression of normal and mutant huntingtin in the developing brain. J Neurosci 16:5523–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reiner A, Dragatsis I, Dietrich P (2011) Genetics and neuropathology of huntington’s disease. Int Rev Neurobiol 98:325–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lorenzetti D, Watase K, Xu B, Matzuk MM, Orr HT, Zoghbi HY (2000) Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum Mol Genet 9:779–785

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Lim laboratory for providing valuable comments and feedback. The figures were created with BioRender.com.

Funding

This work was supported by National Institute of Health grants AG076154 (J.L.), AG074609 (J.L.), AG066447 (J.L.), NS083706 (J.L.), NS088321 (J.L.), MH119803 (J.L.), T32 NS007224 (K.L.), and the Lo Graduate Fellowship for Excellence in Stem Cell Research (K.L.).

Author information

Authors and Affiliations

Authors

Contributions

VO and JL developed the concept. VO, NG, KL, FH, and JL wrote the manuscript. All authors reviewed and edited the manuscript and provided comments.

Corresponding author

Correspondence to Janghoo Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmos, V., Gogia, N., Luttik, K. et al. The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): looking beyond the cerebellum. Cell. Mol. Life Sci. 79, 404 (2022). https://doi.org/10.1007/s00018-022-04419-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04419-7

Keywords

Navigation