Skip to main content

Advertisement

Log in

The Ku complex: recent advances and emerging roles outside of non-homologous end-joining

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku’s role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku’s structure, including the original Ku crystal structure and the more recent Ku–DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Fell VL, Schild-Poulter C (2015) The Ku heterodimer: function in DNA repair and beyond. Mutat Res Rev Mutat Res 763:15–29. https://doi.org/10.1016/j.mrrev.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  2. Shadrina O, Garanina I, Korolev S et al (2020) Analysis of RNA binding properties of human Ku protein reveals its interactions with 7SK snRNA and protein components of 7SK snRNP complex. Biochimie 171–172:110–123. https://doi.org/10.1016/j.biochi.2020.02.016

    Article  CAS  PubMed  Google Scholar 

  3. Cohen HY, Lavu S, Bitterman KJ et al (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638. https://doi.org/10.1016/s1097-2765(04)00094-2

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Brann TW, Zhou M et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186:4541–4545. https://doi.org/10.4049/jimmunol.1003389

    Article  CAS  PubMed  Google Scholar 

  5. Mimori T, Akizuki M, Yamagata H et al (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68:611–620. https://doi.org/10.1172/jci110295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussenzweig A, Chen C, da Costa SV et al (1996) Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555. https://doi.org/10.1038/382551a0

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Nelsen C, Hendrickson EA (2002) Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 99:832–837. https://doi.org/10.1073/pnas.022649699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blomen VA, Májek P, Jae LT et al (2015) Gene essentiality and synthetic lethality in haploid human cells. Science 350:1092–1096. https://doi.org/10.1126/science.aac7557

    Article  CAS  PubMed  Google Scholar 

  9. Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412:607–614. https://doi.org/10.1038/35088000

    Article  CAS  PubMed  Google Scholar 

  10. Grundy GJ, Rulten SL, Arribas-Bosacoma R et al (2016) The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins. Nat Commun 7:11242. https://doi.org/10.1038/ncomms11242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nemoz C, Ropars V, Frit P et al (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 25:971–980. https://doi.org/10.1038/s41594-018-0133-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abbasi S, Schild-Poulter C (2019) Mapping the Ku interactome using proximity-dependent biotin identification in human cells. J Proteome Res 18:1064–1077. https://doi.org/10.1021/acs.jproteome.8b00771

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Satoh M, Pierani A et al (1994) Assembly and DNA binding of recombinant Ku (p70/p80) autoantigen defined by a novel monoclonal antibody specific for p70/p80 heterodimers. J Cell Sci 107(Pt 11):3223–3233

    Article  CAS  PubMed  Google Scholar 

  15. Schild-Poulter C, Pope L, Giffin W et al (2001) The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase. J Biol Chem 276:16848–16856. https://doi.org/10.1074/jbc.M100768200

    Article  CAS  PubMed  Google Scholar 

  16. Gu Y, Jin S, Gao Y et al (1997) Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 94:8076–8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanakahi LA (2007) 2-Step purification of the Ku DNA repair protein expressed in Escherichia coli. Protein Expr Purif 52:139–145. https://doi.org/10.1016/j.pep.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  18. Tadi SK, Tellier-Lebègue C, Nemoz C et al (2016) PAXX is an accessory c-NHEJ factor that associates with Ku70 and has overlapping functions with XLF. Cell Rep 17:541–555. https://doi.org/10.1016/j.celrep.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  19. Mimori T, Hardin JA (1986) Mechanism of interaction between Ku protein and DNA. J Biol Chem 261:10375–10379

    Article  CAS  PubMed  Google Scholar 

  20. Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20:698–714. https://doi.org/10.1038/s41580-019-0152-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doherty AJ, Jackson SP (2001) DNA repair: Topological analysis of chromatin-associated protein complexes using single affinity purification. Curr Biol 11:R920–R924. https://doi.org/10.1016/S0960-9822(01)00555-3

    Article  CAS  PubMed  Google Scholar 

  22. Ribes-Zamora A, Mihalek I, Lichtarge O, Bertuch AA (2007) Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 14:301–307. https://doi.org/10.1038/nsmb1214

    Article  CAS  PubMed  Google Scholar 

  23. Grundy GJ, Rulten SL, Zeng Z et al (2013) APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO J 32:112–125. https://doi.org/10.1038/emboj.2012.304

    Article  CAS  PubMed  Google Scholar 

  24. Yoo S, Kimzey A, Dynan WS (1999) Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J Biol Chem 274:20034–20039. https://doi.org/10.1074/jbc.274.28.20034

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Zhu L, Lin D et al (2001) The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J Biol Chem 276:38231–38236

    Article  CAS  PubMed  Google Scholar 

  26. Göhring F, Schwab BL, Nicotera P et al (1997) The novel SAR-binding domain of scaffold attachment factor A (SAF-A) is a target in apoptotic nuclear breakdown. EMBO J 16:7361–7371. https://doi.org/10.1093/emboj/16.24.7361

    Article  PubMed  PubMed Central  Google Scholar 

  27. Suzuki R, Shindo H, Tase A et al (2009) Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa. Proteins 75:336–347. https://doi.org/10.1002/prot.22243

    Article  CAS  PubMed  Google Scholar 

  28. Lehman JA, Hoelz DJ, Turchi JJ (2008) DNA-dependant conformational changes in the Ku heterodimer. Biochemistry 47:4359–4368. https://doi.org/10.1021/bi702284c

    Article  CAS  PubMed  Google Scholar 

  29. Hu S, Pluth JM, Cucinotta FA (2012) Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. J Mol Model 18:2163–2174. https://doi.org/10.1007/s00894-011-1234-x

    Article  CAS  PubMed  Google Scholar 

  30. Rivera-Calzada A, Spagnolo L, Pearl LH, Llorca O (2007) Structural model of full-length human Ku70–Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep 8:56–62. https://doi.org/10.1038/sj.embor.7400847

    Article  CAS  PubMed  Google Scholar 

  31. Makowski MM, Willems E, Jansen PWTC, Vermeulen M (2016) Cross-linking immunoprecipitation-MS (xIP-MS): topological analysis of chromatin-associated protein complexes using single affinity purification. Mol Cell Proteomics 15:854–865. https://doi.org/10.1074/mcp.M115.053082

    Article  CAS  PubMed  Google Scholar 

  32. Harris R, Esposito D, Sankar A et al (2004) The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). J Mol Biol 335:573–582. https://doi.org/10.1016/j.jmb.2003.10.047

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Hu W, Cano L et al (2004) Solution structure of the C-terminal domain of Ku80 suggests important sites for protein-protein interactions. Structure 12:495–502. https://doi.org/10.1016/j.str.2004.02.007

    Article  CAS  PubMed  Google Scholar 

  34. Hammel M, Yu Y, Mahaney BL et al (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285:1414–1423. https://doi.org/10.1074/jbc.M109.065615

    Article  PubMed  Google Scholar 

  35. Sibanda BL, Chirgadze DY, Ascher DB, Blundell TL (2017) DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355:520–524. https://doi.org/10.1126/science.aak9654

    Article  CAS  PubMed  Google Scholar 

  36. Sharif H, Li Y, Dong Y et al (2017) Cryo-EM structure of the DNA-PK holoenzyme. Proc Natl Acad Sci USA 114:7367–7372. https://doi.org/10.1073/pnas.1707386114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin X, Liu M, Tian Y et al (2017) Cryo-EM structure of human DNA-PK holoenzyme. Cell Res 27:1341–1350. https://doi.org/10.1038/cr.2017.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca O (2006) Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell 22:511–519. https://doi.org/10.1016/j.molcel.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  39. Chaplin AK, Hardwick SW, Liang S et al (2020) Dimers of DNA-PK create a stage for DNA double-strand break repair. Nat Struct Mol Biol. https://doi.org/10.1038/s41594-020-00517-x

    Article  PubMed  Google Scholar 

  40. Bowater R, Doherty AJ (2006) Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2:e8. https://doi.org/10.1371/journal.pgen.0020008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26:1551–1559. https://doi.org/10.1093/nar/26.7.1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aravind L, Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365–1374. https://doi.org/10.1101/gr.181001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gell D, Jackson SP (1999) Mapping of protein–protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 27:3494–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lees-Miller JP, Cobban A, Katsonis P et al (2020) Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2020.09.010

    Article  PubMed  Google Scholar 

  45. Smith GCM, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    Article  CAS  PubMed  Google Scholar 

  46. Lemmens BBLG, Tijsterman M (2011) DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 120:1–21. https://doi.org/10.1007/s00412-010-0296-3

    Article  CAS  PubMed  Google Scholar 

  47. Clejan I, Boerckel J, Ahmed S (2006) Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 173:1301–1317. https://doi.org/10.1534/genetics.106.058628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emerson CH, Bertuch AA (2016) Consider the workhorse: nonhomologous end joining in budding yeast. Biochem Cell Biol 94:396–406. https://doi.org/10.1139/bcb-2016-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861. https://doi.org/10.1038/nrmicro1768

    Article  CAS  PubMed  Google Scholar 

  50. Pitcher RS, Brissett NC, Doherty AJ (2007) Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259–282. https://doi.org/10.1146/annurev.micro.61.080706.093354

    Article  CAS  PubMed  Google Scholar 

  51. White MF, Allers T (2018) DNA repair in the archaea—an emerging picture. FEMS Microbiol Rev 42:514–526. https://doi.org/10.1093/femsre/fuy020

    Article  CAS  PubMed  Google Scholar 

  52. Bartlett EJ, Brissett NC, Doherty AJ (2013) Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates. Proc Natl Acad Sci USA 110:E1984–E1991. https://doi.org/10.1073/pnas.1302616110

    Article  PubMed  PubMed Central  Google Scholar 

  53. di Fagagna F, d’Adda WGR, Doherty AJ, Jackson SP (2003) The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep 4:47–52. https://doi.org/10.1038/sj.embor.embor709

    Article  PubMed Central  Google Scholar 

  54. Bhattacharyya S, Soniat MM, Walker D et al (2018) Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase. Proc Natl Acad Sci USA 115:E11614–E11622. https://doi.org/10.1073/pnas.1816606115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nenarokova A, Záhonová K, Krasilnikova M et al (2019) Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. MBio 10:e01541-e1619. https://doi.org/10.1128/mBio.01541-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Indiviglio SM, Bertuch AA (2009) Ku’s essential role in keeping telomeres intact. Proc Natl Acad Sci USA 106:12217–12218. https://doi.org/10.1073/pnas.0906427106

    Article  PubMed  PubMed Central  Google Scholar 

  57. de Sena-Tomás C, Yu EY, Calzada A et al (2015) Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Res 43:2138–2151. https://doi.org/10.1093/nar/gkv082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Omori S, Takiguchi Y, Suda A et al (2002) Suppression of a DNA double-strand break repair gene, Ku70, increases radio- and chemosensitivity in a human lung carcinoma cell line. DNA Repair 1:299–310. https://doi.org/10.1016/s1568-7864(02)00006-x

    Article  CAS  PubMed  Google Scholar 

  59. Uegaki K, Adachi N, So S et al (2006) Heterozygous inactivation of human Ku70/Ku86 heterodimer does not affect cell growth, double-strand break repair, or genome integrity. DNA Repair (Amst) 5:303–311. https://doi.org/10.1016/j.dnarep.2005.10.008

    Article  CAS  Google Scholar 

  60. Fattah FJ, Lichter NF, Fattah KR et al (2008) Ku70, an essential gene, modulates the frequency of rAAV-mediated gene targeting in human somatic cells. PNAS 105:8703–8708. https://doi.org/10.1073/pnas.0712060105

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gama V, Gomez JA, Mayo LD et al (2009) Hdm2 is a ubiquitin ligase of Ku70-Akt promotes cell survival by inhibiting Hdm2-dependent Ku70 destabilization. Cell Death Differ 16:758–769. https://doi.org/10.1038/cdd.2009.6

    Article  CAS  PubMed  Google Scholar 

  62. Li GC, Ouyang H, Li X et al (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2:1–8. https://doi.org/10.1016/s1097-2765(00)80108-2

    Article  CAS  PubMed  Google Scholar 

  63. Ouyang H, Nussenzweig A, Kurimasa A et al (1997) Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 186:921–929. https://doi.org/10.1084/jem.186.6.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee SE, Pulaski CR, He DM et al (1995) Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination. Mutat Res/DNA Repair 336:279–291. https://doi.org/10.1016/0921-8777(95)00002-2

    Article  CAS  Google Scholar 

  65. Finnie NJ, Gottlieb TM, Blunt T et al (1995) DNA-dependent protein kinase activity is absent in xrs-6 cells: implications for site-specific recombination and DNA double-strand break repair. PNAS 92:320–324. https://doi.org/10.1073/pnas.92.1.320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singleton BK, Priestley A, Steingrimsdottir H et al (1997) Molecular and biochemical characterization of xrs mutants defective in Ku80. Mol Cell Biol 17:1264–1273. https://doi.org/10.1128/MCB.17.3.1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zdzienicka MZ, Tran Q, van der Schans GP, Simons JWIM (1988) Characterization of an X-ray-hypersensitive mutant of V79 Chinese hamster cells. Mutat Res/DNA Repair Rep 194:239–249. https://doi.org/10.1016/0167-8817(88)90025-9

    Article  CAS  Google Scholar 

  68. Zdzienicka MZ (1995) Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutat Res/DNA Repair 336:203–213. https://doi.org/10.1016/0921-8777(95)00003-3

    Article  CAS  Google Scholar 

  69. Marangoni E, Le Romancer M, Foray N et al (2000) Transfer of Ku86 RNA antisense decreases the radioresistance of human fibroblasts. Cancer Gene Ther 7:339–346. https://doi.org/10.1038/sj.cgt.7700111

    Article  CAS  PubMed  Google Scholar 

  70. Jaco I, Muñoz P, Blasco MA (2004) Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 64:7271–7278. https://doi.org/10.1158/0008-5472.CAN-04-1381

    Article  CAS  PubMed  Google Scholar 

  71. Zhu C, Bogue MA, Lim D-S et al (1996) Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86:379–389. https://doi.org/10.1016/S0092-8674(00)80111-7

    Article  CAS  PubMed  Google Scholar 

  72. Fan Y, Li J, Wei W et al (2019) Ku80 gene knockdown by the CRISPR/Cas9 technique affects the biological functions of human thyroid carcinoma cells. Oncol Rep 42:2486–2498. https://doi.org/10.3892/or.2019.7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fattah KR, Ruis BL, Hendrickson EA (2008) Mutations to Ku reveal differences in human somatic cell lines. DNA Repair 7:762–774. https://doi.org/10.1016/j.dnarep.2008.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ghosh G, Li G, Myung K, Hendrickson EA (2007) The lethality of Ku86 (XRCC5) loss-of-function mutations in human cells is independent of p53 (TP53). Radiat Res 167:66–79. https://doi.org/10.1667/RR0692.1

    Article  CAS  PubMed  Google Scholar 

  75. Gu Y, Seidl KJ, Rathbun GA et al (1997) Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7:653–665. https://doi.org/10.1016/S1074-7613(00)80386-6

    Article  CAS  PubMed  Google Scholar 

  76. Nussenzweig A, Sokol K, Burgman P et al (1997) Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc Natl Acad Sci U S A 94:13588–13593. https://doi.org/10.1073/pnas.94.25.13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Karanjawala ZE, Grawunder U, Hsieh CL, Lieber MR (1999) The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr Biol 9:1501–1504. https://doi.org/10.1016/s0960-9822(00)80123-2

    Article  CAS  PubMed  Google Scholar 

  78. Hasty P, Vijg J (2004) Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 3:55–65. https://doi.org/10.1111/j.1474-9728.2004.00082.x

    Article  CAS  PubMed  Google Scholar 

  79. Vogel H, Lim D-S, Karsenty G et al (1999) Deletion of Ku86 causes early onset of senescence in mice. PNAS 96:10770–10775. https://doi.org/10.1073/pnas.96.19.10770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Difilippantonio MJ, Zhu J, Chen HT et al (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514. https://doi.org/10.1038/35006670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferguson DO, Sekiguchi JM, Chang S et al (2000) The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci U S A 97:6630–6633. https://doi.org/10.1073/pnas.110152897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ma S, Chang J, Wang X et al (2014) CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4:4489. https://doi.org/10.1038/srep04489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. C. elegans Deletion Mutant Consortium (2012) Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda) 2:1415–1425. https://doi.org/10.1534/g3.112.003830

    Article  CAS  Google Scholar 

  84. Fukushima T, Takata M, Morrison C et al (2001) Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair. J Biol Chem 276:44413–44418. https://doi.org/10.1074/jbc.M106295200

    Article  CAS  PubMed  Google Scholar 

  85. Jeggo PA, Kemp LM (1983) X-ray-sensitive mutants of Chinese hamster ovary cell line isolation and cross-sensitivity to other DNA-damaging agents. Mutat Res/DNA Repair Rep 112:313–327. https://doi.org/10.1016/0167-8817(83)90026-3

    Article  CAS  Google Scholar 

  86. Qiao Y-M, Yu R-L, Zhu P (2019) Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv 9:35124–35134. https://doi.org/10.1039/C9RA06908A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11:3265–3275. https://doi.org/10.1091/mbc.11.10.3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. West CE, Waterworth WM, Story GW et al (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31:517–528. https://doi.org/10.1046/j.1365-313X.2002.01370.x

    Article  CAS  PubMed  Google Scholar 

  89. Fox BA, Ristuccia JG, Gigley JP, Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8:520–529. https://doi.org/10.1128/EC.00357-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koike M (2002) Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res 43:223–236. https://doi.org/10.1269/jrr.43.223

    Article  CAS  PubMed  Google Scholar 

  91. Koike M, Shiomi T, Koike A (2000) Ku70 can translocate to the nucleus independent of Ku80 translocation and DNA-PK autophosphorylation. Biochem Biophys Res Commun 276:1105–1111. https://doi.org/10.1006/bbrc.2000.3567

    Article  CAS  PubMed  Google Scholar 

  92. Bertinato J, Schild-Poulter C, Haché RJG (2001) Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 114:89–99

    Article  CAS  PubMed  Google Scholar 

  93. Miyoshi T, Sadaie M, Kanoh J, Ishikawa F (2003) Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J Biol Chem 278:1924–1931. https://doi.org/10.1074/jbc.M208813200

    Article  CAS  PubMed  Google Scholar 

  94. Mukherjee S, Chakraborty P, Saha P (2016) Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res 44:7755–7765. https://doi.org/10.1093/nar/gkw622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schild-Poulter C, Matheos D, Novac O et al (2003) Differential DNA binding of Ku antigen determines its involvement in DNA replication. DNA Cell Biol 22:65–78. https://doi.org/10.1089/104454903321515887

    Article  CAS  PubMed  Google Scholar 

  96. Bertinato J, Tomlinson JJ, Schild-Poulter C, Haché RJG (2003) Evidence implicating Ku antigen as a structural factor in RNA polymerase II-mediated transcription. Gene 302:53–64. https://doi.org/10.1016/s0378111902010892

    Article  CAS  PubMed  Google Scholar 

  97. Mo X, Dynan WS (2002) Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 22:8088–8099. https://doi.org/10.1128/mcb.22.22.8088-8099.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Adelmant G, Calkins AS, Garg BK et al (2012) DNA ends alter the molecular composition and localization of Ku multicomponent complexes. Mol Cell Proteomics 11:411–421. https://doi.org/10.1074/mcp.M111.013581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moore HM, Bai B, Boisvert F-M et al (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:009241. https://doi.org/10.1074/mcp.M111.009241

    Article  CAS  PubMed  Google Scholar 

  100. Shao Z, Flynn RA, Crowe JL et al (2020) DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature 579:291–296. https://doi.org/10.1038/s41586-020-2041-2

    Article  CAS  PubMed  Google Scholar 

  101. Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044. https://doi.org/10.1093/emboj/21.8.2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Byrum J, Jordan S, Safrany ST, Rodgers W (2004) Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res 32:2776–2784. https://doi.org/10.1093/nar/gkh592

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cheung JCY, Salerno B, Hanakahi LA (2008) Evidence for an inositol hexakisphosphate-dependent role for Ku in mammalian nonhomologous end joining that is independent of its role in the DNA-dependent protein kinase. Nucleic Acids Res 36:5713–5726. https://doi.org/10.1093/nar/gkn572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dejmek J, Iglehart JD, Lazaro J-B (2009) DNA-dependent protein kinase (DNA-PK)-dependent cisplatin-induced loss of nucleolar facilitator of chromatin transcription (FACT) and regulation of cisplatin sensitivity by DNA-PK and FACT. Mol Cancer Res 7:581–591. https://doi.org/10.1158/1541-7786.MCR-08-0049

    Article  CAS  PubMed  Google Scholar 

  105. Higashiura M, Shimizu Y, Tanimoto M et al (1992) Immunolocalization of Ku-proteins (p80/p70): localization of p70 to nucleoli and periphery of both interphase nuclei and metaphase chromosomes. Exp Cell Res 201:444–451. https://doi.org/10.1016/0014-4827(92)90293-h

    Article  CAS  PubMed  Google Scholar 

  106. Coffey G, Lakshmipathy U, Campbell C (1999) Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res 27:3348–3354. https://doi.org/10.1093/nar/27.16.3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tadi SK, Sebastian R, Dahal S et al (2016) Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 27:223–235. https://doi.org/10.1091/mbc.E15-05-0260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mimori T, Hardin JA, Steitz JA (1986) Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem 261:2274–2278

    Article  CAS  PubMed  Google Scholar 

  109. Choi EK, Lee YH, Choi YS et al (2002) Heterogeneous expression of Ku70 in human tissues is associated with morphological and functional alterations of the nucleus. J Pathol 198:121–130. https://doi.org/10.1002/path.1164

    Article  CAS  PubMed  Google Scholar 

  110. Yagura T, Sumi K (1999) Molecular cloning and sequencing of cDNAs encoding homologues of human Ku70 and Ku80 autoantigen from Xenopus and their expression in various Xenopus tissues. Biochim Biophys Acta Gene Struct Expr 1445:160–164. https://doi.org/10.1016/S0167-4781(99)00028-7

    Article  CAS  Google Scholar 

  111. Jacoby DB, Wensink PC (1994) Yolk protein factor 1 is a Drosophila homolog of Ku, the DNA-binding subunit of a DNA-dependent protein kinase from humans. J Biol Chem 269:11484–11491

    Article  CAS  PubMed  Google Scholar 

  112. Tamura K, Adachi Y, Chiba K et al (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29:771–781. https://doi.org/10.1046/j.1365-313x.2002.01258.x

    Article  CAS  PubMed  Google Scholar 

  113. Pink RC, Carter DRF (2013) Pseudogenes as regulators of biological function. Essays Biochem 54:103–112. https://doi.org/10.1042/bse0540103

    Article  CAS  PubMed  Google Scholar 

  114. Myung K, He DM, Lee SE, Hendrickson EA (1997) KARP-1: a novel leucine zipper protein expressed from the Ku86 autoantigen locus is implicated in the control of DNA-dependent protein kinase activity. EMBO J 16:3172–3184. https://doi.org/10.1093/emboj/16.11.3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koike M, Yutoku Y, Koike A (2011) KARP-1 works as a heterodimer with Ku70, but the function of KARP-1 cannot perfectly replace that of Ku80 in DSB repair. Exp Cell Res 317:2267–2275. https://doi.org/10.1016/j.yexcr.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  116. Myung K, Braastad C, He DM, Hendrickson EA (1998) KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion. Proc Natl Acad Sci USA 95:7664–7669. https://doi.org/10.1073/pnas.95.13.7664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Do E, Taira E, Irie Y et al (2003) Molecular cloning and characterization of rKAB1, which interacts with KARP-1, localizes in the nucleus and protects cells against oxidative death. Mol Cell Biochem 248:77–83. https://doi.org/10.1023/a:1024157515342

    Article  CAS  PubMed  Google Scholar 

  118. Davis AJ, Lee K-J, Chen DJ (2013) The N-terminal region of the DNA-dependent protein kinase catalytic subunit is required for its DNA double-stranded break-mediated activation. J Biol Chem 288:7037–7046. https://doi.org/10.1074/jbc.M112.434498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Singleton BK, Torres-Arzayus MI, Rottinghaus ST et al (1999) The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 19:3267–3277. https://doi.org/10.1128/mcb.19.5.3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weterings E, Verkaik NS, Keijzers G et al (2009) The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends. Mol Cell Biol 29:1134–1142. https://doi.org/10.1128/MCB.00971-08

    Article  CAS  PubMed  Google Scholar 

  121. Radhakrishnan SK, Lees-Miller SP (2017) DNA requirements for interaction of the C-terminal region of Ku80 with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA Repair 57:17–28. https://doi.org/10.1016/j.dnarep.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  122. Jette N, Lees-Miller SP (2015) The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol 117:194–205. https://doi.org/10.1016/j.pbiomolbio.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  123. Douglas P, Ye R, Radhamani S et al (2020) Nocodazole-induced expression and phosphorylation of Anillin and other mitotic proteins are decreased in DNA-dependent protein kinase catalytic subunit-deficient cells and rescued by inhibition of the anaphase-promoting complex/cyclosome with proTAME but not Apcin. Mol Cell Biol 40:e00191-e219. https://doi.org/10.1128/MCB.00191-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bürckstümmer T, Bennett KL, Preradovic A et al (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019. https://doi.org/10.1038/nmeth968

    Article  CAS  PubMed  Google Scholar 

  125. Shirodkar P, Fenton AL, Meng L, Koch CA (2013) Identification and functional characterization of a Ku-binding motif in aprataxin polynucleotide kinase/phosphatase-like factor (APLF). J Biol Chem 288:19604–19613. https://doi.org/10.1074/jbc.M112.440388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chung JH (2018) The role of DNA-PK in aging and energy metabolism. FEBS J 285:1959–1972. https://doi.org/10.1111/febs.14410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mari P-O, Florea BI, Persengiev SP et al (2006) Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103:18597–18602. https://doi.org/10.1073/pnas.0609061103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Song K, Jung D, Jung Y et al (2000) Interaction of human Ku70 with TRF2. FEBS Lett 481:81–85. https://doi.org/10.1016/s0014-5793(00)01958-x

    Article  CAS  PubMed  Google Scholar 

  129. Hsu H-L, Gilley D, Blackburn EH, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96:12454–12458. https://doi.org/10.1073/pnas.96.22.12454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. O’Connor MS, Safari A, Liu D et al (2004) The human Rap1 protein complex and modulation of telomere length. J Biol Chem 279:28585–28591. https://doi.org/10.1074/jbc.M312913200

    Article  CAS  PubMed  Google Scholar 

  131. Chai W, Ford LP, Lenertz L et al (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277:47242–47247. https://doi.org/10.1074/jbc.M208542200

    Article  CAS  PubMed  Google Scholar 

  132. Fell VL, Walden EA, Hoffer SM et al (2016) Ku70 serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Sci Rep 6:37194. https://doi.org/10.1038/srep37194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Feki A, Jefford CE, Berardi P et al (2005) BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene 24:3726–3736. https://doi.org/10.1038/sj.onc.1208491

    Article  CAS  PubMed  Google Scholar 

  134. Goudelock DM, Jiang K, Pereira E et al (2003) Regulatory interactions between the checkpoint kinase Chk1 and the proteins of the DNA-dependent protein kinase complex. J Biol Chem 278:29940–29947. https://doi.org/10.1074/jbc.M301765200

    Article  CAS  PubMed  Google Scholar 

  135. Thapar R, Wang JL, Hammel M et al (2020) Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 48:10953–10972. https://doi.org/10.1093/nar/gkaa784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gallardo F, Olivier C, Dandjinou AT et al (2008) TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 27:748–757. https://doi.org/10.1038/emboj.2008.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yuan M, Eberhart CG, Kai M (2014) RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation. Oncotarget 5:2820–2826. https://doi.org/10.18632/oncotarget.1924

    Article  PubMed  PubMed Central  Google Scholar 

  138. Maldonado E, Shiekhattar R, Sheldon M et al (1996) A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89. https://doi.org/10.1038/381086a0

    Article  CAS  PubMed  Google Scholar 

  139. Willis DM, Loewy AP, Charlton-Kachigian N et al (2002) Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. J Biol Chem 277:37280–37291. https://doi.org/10.1074/jbc.M206482200

    Article  CAS  PubMed  Google Scholar 

  140. Shao RG, Cao CX, Zhang H et al (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18:1397–1406. https://doi.org/10.1093/emboj/18.5.1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M (2002) Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. Biochim Biophys Acta 1578:59–72. https://doi.org/10.1016/s0167-4781(02)00497-9

    Article  CAS  PubMed  Google Scholar 

  142. Raval P, Kriatchko AN, Kumar S, Swanson PC (2008) Evidence for Ku70/Ku80 association with full-length RAG1. Nucleic Acids Res 36:2060–2072. https://doi.org/10.1093/nar/gkn049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Purugganan MM, Shah S, Kearney JF, Roth DB (2001) Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res 29:1638–1646. https://doi.org/10.1093/nar/29.7.1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim K-B, Kim D-W, Park JW et al (2014) Inhibition of Ku70 acetylation by INHAT subunit SET/TAF-Iβ regulates Ku70-mediated DNA damage response. Cell Mol Life Sci 71:2731–2745. https://doi.org/10.1007/s00018-013-1525-8

    Article  CAS  PubMed  Google Scholar 

  145. Gomez JA, Gama V, Yoshida T et al (2007) Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans 35:797–801. https://doi.org/10.1042/BST0350797

    Article  CAS  PubMed  Google Scholar 

  146. Mazumder S, Plesca D, Kinter M, Almasan A (2007) Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol Cell Biol 27:3511–3520. https://doi.org/10.1128/MCB.01448-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Downs JA, Jackson SP (2004) A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 5:367–378. https://doi.org/10.1038/nrm1367

    Article  CAS  PubMed  Google Scholar 

  148. Song K, Jung Y, Jung D, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1alpha. J Biol Chem 276:8321–8327. https://doi.org/10.1074/jbc.M008779200

    Article  CAS  PubMed  Google Scholar 

  149. Yang CR, Yeh S, Leskov K et al (1999) Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res 27:2165–2174. https://doi.org/10.1093/nar/27.10.2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Costes SV, Daelemans D, Cho EH et al (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003. https://doi.org/10.1529/biophysj.103.038422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477. https://doi.org/10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  152. Frit P, Ropars V, Modesti M et al (2019) Plugged into the Ku-DNA hub: the NHEJ network. Prog Biophys Mol Biol 147:62–76. https://doi.org/10.1016/j.pbiomolbio.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  153. Hung PJ, Johnson B, Chen B-R et al (2018) MRI is a DNA damage response adaptor during classical non-homologous end joining. Mol Cell 71:332-342.e8. https://doi.org/10.1016/j.molcel.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim K, Min J, Kirby TW et al (2020) Ligand binding characteristics of the Ku80 von Willebrand domain. DNA Repair (Amst) 85:102739. https://doi.org/10.1016/j.dnarep.2019.102739

    Article  CAS  Google Scholar 

  155. Bouley J, Saad L, Grall R et al (2015) A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget 6:27980–28000. https://doi.org/10.18632/oncotarget.4735

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lee K-J, Saha J, Sun J et al (2016) Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic Acids Res 44:1732–1745. https://doi.org/10.1093/nar/gkv1499

    Article  PubMed  Google Scholar 

  157. Brown JS, Lukashchuk N, Sczaniecka-Clift M et al (2015) Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites. Cell Rep 11:704–714. https://doi.org/10.1016/j.celrep.2015.03.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chan DW, Ye R, Veillette CJ, Lees-Miller SP (1999) DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 38:1819–1828. https://doi.org/10.1021/bi982584b

    Article  CAS  PubMed  Google Scholar 

  159. Jin S, Weaver DT (1997) Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J 16:6874–6885. https://doi.org/10.1093/emboj/16.22.6874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Douglas P, Gupta S, Morrice N et al (2005) DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining. DNA Repair 4:1006–1018. https://doi.org/10.1016/j.dnarep.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  161. Koike M, Koike A (2008) Accumulation of Ku80 proteins at DNA double-strand breaks in living cells. Exp Cell Res 314:1061–1070. https://doi.org/10.1016/j.yexcr.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  162. Chi Y, Welcker M, Hizli AA et al (2008) Identification of CDK2 substrates in human cell lysates. Genome Biol 9:R149. https://doi.org/10.1186/gb-2008-9-10-r149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Müller-Tidow C, Ji P, Diederichs S et al (2004) The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 24:8917–8928. https://doi.org/10.1128/MCB.24.20.8917-8928.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ji P, Bäumer N, Yin T et al (2007) DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer 121:706–713. https://doi.org/10.1002/ijc.22634

    Article  CAS  PubMed  Google Scholar 

  165. Fell VL, Schild-Poulter C (2012) Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol 32:76–87. https://doi.org/10.1128/MCB.05661-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Blasius M, Forment JV, Thakkar N et al (2011) A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1. Genome Biol 12:R78. https://doi.org/10.1186/gb-2011-12-8-r78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kettenbach AN, Wang T, Faherty BK et al (2012) Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem Biol 19:608–618. https://doi.org/10.1016/j.chembiol.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pucci S, Mazzarelli P, Sesti F et al (2009) Interleukin-6 affects cell death escaping mechanisms acting on Bax–Ku70-Clusterin interactions in human colon cancer progression. Cell Cycle 8:473–481. https://doi.org/10.4161/cc.8.3.7652

    Article  CAS  PubMed  Google Scholar 

  169. Koike M, Yutoku Y, Koike A (2017) Cloning of canine Ku80 and its localization and accumulation at DNA damage sites. FEBS Open Bio 7:1854–1863. https://doi.org/10.1002/2211-5463.12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Al-Emam A, Arbon D, Kysela B (2014) Deacetylation of Ku70 regulates ionizing-radiation induced DNA damage responses in human cells. BMC Genomics 15:P24. https://doi.org/10.1186/1471-2164-15-S2-P24

    Article  PubMed Central  Google Scholar 

  171. Subramanian C, Hada M, Opipari AW et al (2013) CREB-binding protein regulates Ku70 acetylation in response to ionization radiation in neuroblastoma. Mol Cancer Res 11:173–181. https://doi.org/10.1158/1541-7786.MCR-12-0065

    Article  CAS  PubMed  Google Scholar 

  172. Subramanian C, Opipari AW, Bian X et al (2005) Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:4842–4847. https://doi.org/10.1073/pnas.0408351102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xiao Y, Wang J, Qin Y et al (2015) Ku80 cooperates with CBP to promote COX-2 expression and tumor growth. Oncotarget 6:8046–8061. https://doi.org/10.18632/oncotarget.3508

    Article  PubMed  PubMed Central  Google Scholar 

  174. Li L, Ye S, Yang M et al (2015) SIRT1 downregulation enhances chemosensitivity and survival of adult T-cell leukemia-lymphoma cells by reducing DNA double-strand repair. Oncol Rep 34:2935–2942. https://doi.org/10.3892/or.2015.4287

    Article  CAS  PubMed  Google Scholar 

  175. Tao N-N, Ren J-H, Tang H et al (2017) Deacetylation of Ku70 by SIRT6 attenuates Bax-mediated apoptosis in hepatocellular carcinoma. Biochem Biophys Res Commun 485:713–719. https://doi.org/10.1016/j.bbrc.2017.02.111

    Article  CAS  PubMed  Google Scholar 

  176. Chaudhary N, Nakka KK, Chavali PL et al (2014) SMAR1 coordinates HDAC6-induced deacetylation of Ku70 and dictates cell fate upon irradiation. Cell Death Dis 5:e1447. https://doi.org/10.1038/cddis.2014.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17:379–394. https://doi.org/10.1038/nrm.2016.58

    Article  CAS  PubMed  Google Scholar 

  178. Postow L, Ghenoiu C, Woo EM et al (2008) Ku80 removal from DNA through double strand break–induced ubiquitylation. J Cell Biol 182:467–479. https://doi.org/10.1083/jcb.200802146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hang LE, Lopez CR, Liu X et al (2014) Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem 289:10308–10317. https://doi.org/10.1074/jbc.M113.526178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Williams ES, Stap J, Essers J et al (2007) DNA double-strand breaks are not sufficient to initiate recruitment of TRF2. Nat Genet 39:696–699. https://doi.org/10.1038/ng0607-696

    Article  CAS  PubMed  Google Scholar 

  181. Weterings E, Verkaik NS, Brüggenwirth HT et al (2003) The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res 31:7238–7246. https://doi.org/10.1093/nar/gkg889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dobbs TA, Tainer JA, Lees-Miller SP (2010) A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair (Amst) 9:1307–1314. https://doi.org/10.1016/j.dnarep.2010.09.019

    Article  CAS  PubMed Central  Google Scholar 

  183. Radhakrishnan SK, Jette N, Lees-Miller SP (2014) Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst) 17:2–8. https://doi.org/10.1016/j.dnarep.2014.01.009

    Article  CAS  Google Scholar 

  184. Brouwer I, Sitters G, Candelli A et al (2016) Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. Nature 535:566–569. https://doi.org/10.1038/nature18643

    Article  CAS  PubMed  Google Scholar 

  185. Menon V, Povirk LF (2016) End-processing nucleases and phosphodiesterases: an elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 43:57–68. https://doi.org/10.1016/j.dnarep.2016.05.011

    Article  CAS  Google Scholar 

  186. Critchlow SE, Bowater RP, Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7:588–598. https://doi.org/10.1016/s0960-9822(06)00258-2

    Article  CAS  PubMed  Google Scholar 

  187. Deshpande RA, Myler LR, Soniat MM et al (2020) DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci Adv 6:eaay0922. https://doi.org/10.1126/sciadv.aay0922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. https://doi.org/10.1146/annurev-genet-110711-155540

    Article  CAS  PubMed  Google Scholar 

  189. Postow L (2011) Destroying the ring: freeing DNA from Ku with ubiquitin. FEBS Lett 585:2876–2882. https://doi.org/10.1016/j.febslet.2011.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fugmann SD, Lee AI, Shockett PE et al (2000) The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495–527. https://doi.org/10.1146/annurev.immunol.18.1.495

    Article  CAS  PubMed  Google Scholar 

  191. Jackson SP, Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci 20:412–415. https://doi.org/10.1016/s0968-0004(00)89090-8

    Article  CAS  PubMed  Google Scholar 

  192. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109:S45–S55. https://doi.org/10.1016/s0092-8674(02)00675-x

    Article  CAS  PubMed  Google Scholar 

  193. Soulas-Sprauel P, Rivera-Munoz P, Malivert L et al (2007) V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26:7780–7791. https://doi.org/10.1038/sj.onc.1210875

    Article  CAS  PubMed  Google Scholar 

  194. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439. https://doi.org/10.1038/35044005

    Article  CAS  PubMed  Google Scholar 

  195. Nowsheen S, Yang ES (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34:243–254

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745. https://doi.org/10.1016/j.molcel.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  197. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. https://doi.org/10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang Y, Cortez D, Yazdi P et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297:547–551. https://doi.org/10.1126/science.1074740

    Article  CAS  PubMed  Google Scholar 

  200. Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584:3682–3695. https://doi.org/10.1016/j.febslet.2010.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang M, Wu W, Wu W et al (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170–6182. https://doi.org/10.1093/nar/gkl840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  203. Burma S, Chen BP, Murphy M et al (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  204. Tomimatsu N, Tahimic CGT, Otsuki A et al (2007) Ku70/80 modulates ATM and ATR signaling pathways in response to DNA double strand breaks. J Biol Chem 282:10138–10145. https://doi.org/10.1074/jbc.M611880200

    Article  CAS  PubMed  Google Scholar 

  205. Barnes G, Rio D (1997) DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:867–872. https://doi.org/10.1073/pnas.94.3.867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cosgrove AJ, Nieduszynski CA, Donaldson AD (2002) Ku complex controls the replication time of DNA in telomere regions. Genes Dev 16:2485–2490. https://doi.org/10.1101/gad.231602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Miyoshi T, Kanoh J, Ishikawa F (2009) Fission yeast Ku protein is required for recovery from DNA replication stress. Genes Cells 14:1091–1103. https://doi.org/10.1111/j.1365-2443.2009.01337.x

    Article  CAS  PubMed  Google Scholar 

  208. Sánchez A, Russell P (2015) Ku stabilizes replication forks in the absence of Brc1. PLoS ONE 10:e0126598. https://doi.org/10.1371/journal.pone.0126598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Foster SS, Balestrini A, Petrini JHJ (2011) Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol 31:4379–4389. https://doi.org/10.1128/MCB.05854-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Teixeira-Silva A, Ait Saada A, Hardy J et al (2017) The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat Commun 8:1982. https://doi.org/10.1038/s41467-017-02144-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Abdelbaqi K, Di Paola D, Rampakakis E, Zannis-Hadjopoulos M (2013) Ku protein levels, localization and association to replication origins in different stages of breast tumor progression. J Cancer 4:358–370. https://doi.org/10.7150/jca.6289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Novac O, Matheos D, Araujo FD et al (2001) In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 12:3386–3401. https://doi.org/10.1091/mbc.12.11.3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Park S-J, Ciccone SLM, Freie B et al (2004) A positive role for the Ku complex in DNA replication following strand break damage in mammals. J Biol Chem 279:6046–6055. https://doi.org/10.1074/jbc.M311054200

    Article  CAS  PubMed  Google Scholar 

  214. Rampakakis E, Di Paola D, Zannis-Hadjopoulos M (2008) Ku is involved in cell growth, DNA replication and G1-S transition. J Cell Sci 121:590–600. https://doi.org/10.1242/jcs.021352

    Article  CAS  PubMed  Google Scholar 

  215. Galande S, Kohwi-Shigematsu T (1999) Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 274:20521–20528. https://doi.org/10.1074/jbc.274.29.20521

    Article  CAS  PubMed  Google Scholar 

  216. Giffin W, Torrance H, Rodda DJ et al (1996) Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380:265–268. https://doi.org/10.1038/380265a0

    Article  CAS  PubMed  Google Scholar 

  217. Giffin W, Kwast-Welfeld J, Rodda DJ et al (1997) Sequence-specific DNA binding and transcription factor phosphorylation by Ku autoantigen/DNA-dependent protein kinase. J Biol Chem 272:5647–5658. https://doi.org/10.1074/jbc.272.9.5647

    Article  CAS  PubMed  Google Scholar 

  218. Ludwig DL, Chen F, Peterson SR et al (1997) Ku80 gene expression is Sp1-dependent and sensitive to CpG methylation within a novel cis element. Gene 199:181–194. https://doi.org/10.1016/s0378-1119(97)00366-1

    Article  CAS  PubMed  Google Scholar 

  219. Li GC, Yang SH, Kim D et al (1995) Suppression of heat-induced hsp70 expression by the 70-kDa subunit of the human Ku autoantigen. Proc Natl Acad Sci USA 92:4512–4516. https://doi.org/10.1073/pnas.92.10.4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ono M, Tucker PW, Capra JD (1996) Ku is a general inhibitor of DNA-protein complex formation and transcription. Mol Immunol 33:787–796. https://doi.org/10.1016/0161-5890(96)00030-2

    Article  CAS  PubMed  Google Scholar 

  221. Bunch H, Lawney BP, Lin Y-F et al (2015) Transcriptional elongation requires DNA break-induced signalling. Nat Commun 6:10191. https://doi.org/10.1038/ncomms10191

    Article  CAS  PubMed  Google Scholar 

  222. Dvir A, Stein LY, Calore BL, Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem 268:10440–10447

    Article  CAS  PubMed  Google Scholar 

  223. Anderson CW (1993) DNA damage and the DNA-activated protein kinase. Trends Biochem Sci 18:433–437. https://doi.org/10.1016/0968-0004(93)90144-c

    Article  CAS  PubMed  Google Scholar 

  224. Trotter KW, King HA, Archer TK (2015) Glucocorticoid receptor transcriptional activation via the BRG1-dependent recruitment of TOP2β and Ku70/86. Mol Cell Biol 35:2799–2817. https://doi.org/10.1128/MCB.00230-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nolens G, Pignon J-C, Koopmansch B et al (2009) Ku proteins interact with activator protein-2 transcription factors and contribute to ERBB2 overexpression in breast cancer cell lines. Breast Cancer Res 11:R83. https://doi.org/10.1186/bcr2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Oh WJ, Kim EK, Ko JH et al (2002) Nuclear proteins that bind to metal response element a (MREa) in the Wilson disease gene promoter are Ku autoantigens and the Ku-80 subunit is necessary for basal transcription of the WD gene. Eur J Biochem 269:2151–2161. https://doi.org/10.1046/j.1432-1033.2002.02865.x

    Article  CAS  PubMed  Google Scholar 

  227. Manic G, Maurin-Marlin A, Laurent F et al (2013) Impact of the Ku complex on HIV-1 expression and latency. PLoS ONE 8:e69691. https://doi.org/10.1371/journal.pone.0069691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. https://doi.org/10.1101/gad.1346005

    Article  CAS  PubMed  Google Scholar 

  229. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309. https://doi.org/10.1038/s41576-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  230. Wood AM, Laster K, Rice EL, Kosak ST (2015) A beginning of the end: new insights into the functional organization of telomeres. Nucleus 6:172–178. https://doi.org/10.1080/19491034.2015.1048407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Shay JW (2018) Telomeres and aging. Curr Opin Cell Biol 52:1–7. https://doi.org/10.1016/j.ceb.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  232. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17:1819–1828. https://doi.org/10.1093/emboj/17.6.1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gravel S, Larrivée M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741–744. https://doi.org/10.1126/science.280.5364.741

    Article  CAS  PubMed  Google Scholar 

  234. Martin SG, Laroche T, Suka N et al (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621–633. https://doi.org/10.1016/s0092-8674(00)80773-4

    Article  CAS  PubMed  Google Scholar 

  235. Porter SE, Greenwell PW, Ritchie KB, Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res 24:582–585. https://doi.org/10.1093/nar/24.4.582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Boulton SJ, Jackson SP (1996) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24:4639–4648. https://doi.org/10.1093/nar/24.23.4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Melnikova L, Biessmann H, Georgiev P (2005) The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 170:221–235. https://doi.org/10.1534/genetics.104.034538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hsu HL, Gilley D, Galande SA et al (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14:2807–2812. https://doi.org/10.1101/gad.844000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Samper E, Goytisolo FA, Slijepcevic P et al (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252. https://doi.org/10.1093/embo-reports/kvd051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Espejel S, Franco S, Rodríguez-Perales S et al (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219. https://doi.org/10.1093/emboj/21.9.2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fisher TS, Zakian VA (2005) Ku: a multifunctional protein involved in telomere maintenance. DNA Repair (Amst) 4:1215–1226. https://doi.org/10.1016/j.dnarep.2005.04.021

    Article  CAS  Google Scholar 

  242. Bertuch AA, Lundblad V (2003) The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol Cell Biol 23:8202–8215. https://doi.org/10.1128/mcb.23.22.8202-8215.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sui J, Zhang S, Chen BPC (2020) DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 25:2. https://doi.org/10.1186/s11658-020-0199-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang Y, Ghosh G, Hendrickson EA (2009) Ku86 represses lethal telomere deletion events in human somatic cells. PNAS 106:12430–12435. https://doi.org/10.1073/pnas.0903362106

    Article  PubMed  PubMed Central  Google Scholar 

  245. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179. https://doi.org/10.1038/nrd.2016.117

    Article  CAS  PubMed  Google Scholar 

  246. Donlic A, Hargrove AE (2018) Targeting RNA in mammalian systems with small molecules. Wiley Interdiscip Rev: RNA 9:e1477. https://doi.org/10.1002/wrna.1477

    Article  CAS  PubMed  Google Scholar 

  247. Dutertre M, Vagner S (2017) DNA-damage response RNA-binding proteins (DDRBPs): perspectives from a new class of proteins and their RNA targets. J Mol Biol 429:3139–3145. https://doi.org/10.1016/j.jmb.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  248. Kaczmarski W, Khan SA (1993) Lupus autoantigen Ku protein binds HIV-1 TAR RNA in vitro. Biochem Biophys Res Commun 196:935–942. https://doi.org/10.1006/bbrc.1993.2339

    Article  CAS  PubMed  Google Scholar 

  249. Yoo S, Dynan WS (1998) Characterization of the RNA binding properties of Ku protein. Biochemistry 37:1336–1343. https://doi.org/10.1021/bi972100w

    Article  CAS  PubMed  Google Scholar 

  250. Peterson SE, Stellwagen AE, Diede SJ et al (2001) The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 27:64–67. https://doi.org/10.1038/83778

    Article  CAS  PubMed  Google Scholar 

  251. Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17:2384–2395. https://doi.org/10.1101/gad.1125903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chen H, Xue J, Churikov D et al (2018) Structural insights into yeast telomerase recruitment to telomeres. Cell 172:331–343. https://doi.org/10.1016/j.cell.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  253. Pfingsten JS, Goodrich KJ, Taabazuing C et al (2012) Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 148:922–932. https://doi.org/10.1016/j.cell.2012.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ting NSY, Yu Y, Pohorelic B et al (2005) Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 33:2090–2098. https://doi.org/10.1093/nar/gki342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhang Y, He Q, Hu Z et al (2016) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 23:522–530. https://doi.org/10.1038/nsmb.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16:583–597. https://doi.org/10.1038/nrg3961

    Article  CAS  PubMed  Google Scholar 

  257. Crossley MP, Bocek M, Cimprich KA (2019) R-loops as cellular regulators and genomic threats. Mol Cell 73:398–411. https://doi.org/10.1016/j.molcel.2019.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Bader AS, Hawley BR, Wilczynska A, Bushell M (2020) The roles of RNA in DNA double-strand break repair. Br J Cancer 122:613–623. https://doi.org/10.1038/s41416-019-0624-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ohle C, Tesorero R, Schermann G et al (2016) Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell 167:1001-1013.e7. https://doi.org/10.1016/j.cell.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  260. Lu W-T, Hawley BR, Skalka GL et al (2018) Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 9:532. https://doi.org/10.1038/s41467-018-02893-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Britton S, Dernoncourt E, Delteil C et al (2014) DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res 42:9047–9062. https://doi.org/10.1093/nar/gku601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wang IX, Grunseich C, Fox J et al (2018) Human proteins that interact with RNA/DNA hybrids. Genome Res 28:1405–1414. https://doi.org/10.1101/gr.237362.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Cristini A, Groh M, Kristiansen MS, Gromak N (2018) RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep 23:1891–1905. https://doi.org/10.1016/j.celrep.2018.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lamaa A, Le Bras M, Skuli N et al (2016) A novel cytoprotective function for the DNA repair protein Ku in regulating p53 mRNA translation and function. EMBO Rep 17:508–518. https://doi.org/10.15252/embr.201541181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lombard DB, Chua KF, Mostoslavsky R et al (2005) DNA repair, genome stability, and aging. Cell 120:497–512. https://doi.org/10.1016/j.cell.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  266. Li H, Vogel H, Holcomb VB et al (2007) Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 27:8205–8214. https://doi.org/10.1128/MCB.00785-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Park S-J, Gavrilova O, Brown AL et al (2017) DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab 25:1135-1146.e7. https://doi.org/10.1016/j.cmet.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Armanios M (2013) Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123:996–1002. https://doi.org/10.1172/JCI66370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Liu G-H, Barkho BZ, Ruiz S et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225. https://doi.org/10.1038/nature09879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Karmakar P, Snowden CM, Ramsden DA, Bohr VA (2002) Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30:3583–3591. https://doi.org/10.1093/nar/gkf482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Shamanna RA, Croteau DL, Lee J-H, Bohr VA (2017) Recent advances in understanding Werner syndrome. F1000Research 6:1779. https://doi.org/10.12688/f1000research.12110.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Opresko PL, Cheng W-H, von Kobbe C et al (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24:791–802. https://doi.org/10.1093/carcin/bgg034

    Article  CAS  PubMed  Google Scholar 

  273. Belizna C, Henrion D, Beucher A et al (2010) Anti-Ku antibodies: clinical, genetic and diagnostic insights. Autoimmun Rev 9:691–694. https://doi.org/10.1016/j.autrev.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  274. Cavazzana I, Ceribelli A, Quinzanini M et al (2008) Prevalence and clinical associations of anti-Ku antibodies in systemic autoimmune diseases. Lupus 17:727–732. https://doi.org/10.1177/0961203308089442

    Article  CAS  PubMed  Google Scholar 

  275. Chang WSJ, Schollum J, White DHN, Solanki KK (2015) A cross-sectional study of autoantibody profiles in the Waikato systemic sclerosis cohort, New Zealand. Clin Rheumatol 34:1921–1927. https://doi.org/10.1007/s10067-015-2981-3

    Article  PubMed  Google Scholar 

  276. Rozman B, Cucnik S, Sodin-Semrl S et al (2008) Prevalence and clinical associations of anti-Ku antibodies in patients with systemic sclerosis: a European EUSTAR-initiated multi-centre case-control study. Ann Rheum Dis 67:1282–1286. https://doi.org/10.1136/ard.2007.073981

    Article  CAS  PubMed  Google Scholar 

  277. Hoa S, Hudson M, Troyanov Y et al (2016) Single-specificity anti-Ku antibodies in an international cohort of 2140 systemic sclerosis subjects: clinical associations. Medicine 95:e4713. https://doi.org/10.1097/MD.0000000000004713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Low AHL, Wong S, Thumboo J et al (2012) Evaluation of a new multi-parallel line immunoassay for systemic sclerosis-associated antibodies in an Asian population. Rheumatology (Oxford) 51:1465–1470. https://doi.org/10.1093/rheumatology/kes055

    Article  CAS  Google Scholar 

  279. Patterson KA, Roberts-Thomson PJ, Lester S et al (2015) Interpretation of an extended autoantibody profile in a well-characterized Australian Systemic Sclerosis (Scleroderma) cohort using principal components analysis. Arthritis Rheumatol 67:3234–3244. https://doi.org/10.1002/art.39316

    Article  CAS  PubMed  Google Scholar 

  280. Rodriguez-Reyna TS, Hinojosa-Azaola A, Martinez-Reyes C et al (2011) Distinctive autoantibody profile in Mexican Mestizo systemic sclerosis patients. Autoimmunity 44:576–584. https://doi.org/10.3109/08916934.2011.592886

    Article  CAS  PubMed  Google Scholar 

  281. Ogawa-Momohara M, Muro Y, Akiyama M (2019) Overlap of systemic lupus erythematosus and myositis is rare in anti-Ku antibody-positive patients. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2019-216375

    Article  PubMed  Google Scholar 

  282. Spielmann L, Nespola B, Séverac F et al (2019) Anti-Ku syndrome with elevated CK and anti-Ku syndrome with anti-dsDNA are two distinct entities with different outcomes. Ann Rheum Dis 78:1101–1106. https://doi.org/10.1136/annrheumdis-2018-214439

    Article  CAS  PubMed  Google Scholar 

  283. Schild-Poulter C, Su A, Shih A et al (2008) Association of autoantibodies with Ku and DNA repair proteins in connective tissue diseases. Rheumatology (Oxford) 47:165–171. https://doi.org/10.1093/rheumatology/kem338

    Article  CAS  Google Scholar 

  284. Takeda Y (2001) Autoantibodies against DNA double-strand break repair proteins. Front Biosci 6:d1412. https://doi.org/10.2741/Takeda

    Article  CAS  PubMed  Google Scholar 

  285. Pichlmair A, e Sousa CR (2007) Innate recognition of viruses. Immunity 27:370–383. https://doi.org/10.1016/j.immuni.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  286. Ferguson BJ, Mansur DS, Peters NE et al (2012) DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 1:e00047. https://doi.org/10.7554/eLife.00047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Wang J, Kang L, Song D et al (2017) Ku70 senses HTLV-1 DNA and modulates HTLV-1 replication. J Immunol 199:2475–2482. https://doi.org/10.4049/jimmunol.1700111

    Article  CAS  PubMed  Google Scholar 

  288. Li Y, Wu Y, Zheng X et al (2016) Cytoplasm-translocated Ku70/80 complex sensing of HBV DNA induces hepatitis-associated chemokine secretion. Front Immunol 7:569. https://doi.org/10.3389/fimmu.2016.00569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Sui H, Zhou M, Imamichi H et al (2017) STING is an essential mediator of the Ku70-mediated production of IFN-λ1 in response to exogenous DNA. Sci Signal 10:eaah5054. https://doi.org/10.1126/scisignal.aah5054

    Article  CAS  PubMed  Google Scholar 

  290. Peters NE, Ferguson BJ, Mazzon M et al (2013) A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLOS Pathog 9:e1003649. https://doi.org/10.1371/journal.ppat.1003649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Scutts SR, Ember SW, Ren H et al (2018) DNA-PK is targeted by multiple vaccinia virus proteins to inhibit DNA sensing. Cell Rep 25:1953-1965.e4. https://doi.org/10.1016/j.celrep.2018.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125:S33–S40. https://doi.org/10.1016/j.jaci.2009.09.017

    Article  PubMed  Google Scholar 

  293. Roth DB (2014) V(D)J recombination: mechanism, errors, and fidelity. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0041-2014

    Article  PubMed  Google Scholar 

  294. Fischer A (2000) Severe combined immunodeficiencies (SCID). Clin Exp Immunol 122:143–149. https://doi.org/10.1046/j.1365-2249.2000.01359.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Woodbine L, Gennery AR, Jeggo PA (2014) The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair 16:84–96. https://doi.org/10.1016/j.dnarep.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  296. Sishc BJ, Davis AJ (2017) The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 9:81. https://doi.org/10.3390/cancers9070081

    Article  CAS  PubMed Central  Google Scholar 

  297. Komuro Y, Watanabe T, Hosoi Y et al (2002) The expression pattern of Ku correlates with tumor radiosensitivity and disease free survival in patients with rectal carcinoma. Cancer 95:1199–1205. https://doi.org/10.1002/cncr.10807

    Article  PubMed  Google Scholar 

  298. Rigas B, Borgo S, Elhosseiny A et al (2001) Decreased expression of DNA-dependent protein kinase, a DNA repair protein, during human colon carcinogenesis. Cancer Res 61:8381–8384

    CAS  PubMed  Google Scholar 

  299. Ayene IS, Ford LP, Koch CJ (2005) Ku protein targeting by Ku70 small interfering RNA enhances human cancer cell response to topoisomerase II inhibitor and gamma radiation. Mol Cancer Ther 4:529–536. https://doi.org/10.1158/1535-7163.MCT-04-0130

    Article  CAS  PubMed  Google Scholar 

  300. Beggs AD, Domingo E, McGregor M et al (2012) Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN. Oncotarget 3:1348–1355. https://doi.org/10.18632/oncotarget.694

    Article  PubMed  PubMed Central  Google Scholar 

  301. Wilson CR, Davidson SE, Margison GP et al (2000) Expression of Ku70 correlates with survival in carcinoma of the cervix. Br J Cancer 83:1702–1706. https://doi.org/10.1054/bjoc.2000.1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Hu H, Zhang Y, Zou M et al (2010) Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1 proteins is associated with telomere shortening and may contribute to multistage carcinogenesis of gastric cancer. J Cancer Res Clin Oncol 136:1407–1414. https://doi.org/10.1007/s00432-010-0795-x

    Article  CAS  PubMed  Google Scholar 

  303. Mazzarelli P, Parrella P, Seripa D et al (2005) DNA end binding activity and Ku70/80 heterodimer expression in human colorectal tumor. World J Gastroenterol 11:6694–6700. https://doi.org/10.3748/wjg.v11.i42.6694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Ma Q, Li P, Xu M et al (2012) Ku80 is highly expressed in lung adenocarcinoma and promotes cisplatin resistance. J Exp Clin Cancer Res 31:99. https://doi.org/10.1186/1756-9966-31-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Pucci S, Mazzarelli P, Rabitti C et al (2001) Tumor specific modulation of KU70/80 DNA binding activity in breast and bladder human tumor biopsies. Oncogene 20:739–747. https://doi.org/10.1038/sj.onc.1204148

    Article  CAS  PubMed  Google Scholar 

  306. Ai J, Pascal LE, Wei L et al (2017) EAF2 regulates DNA repair through Ku70/Ku80 in the prostate. Oncogene 36:2054–2065. https://doi.org/10.1038/onc.2016.373

    Article  CAS  PubMed  Google Scholar 

  307. Weterings E, Gallegos AC, Dominick LN et al (2016) A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst) 43:98–106. https://doi.org/10.1016/j.dnarep.2016.03.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mohamed Aly for reading and providing feedback on the review.

Funding

This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and a NSERC Discovery Accelerator Supplement to C.S.P.. S.A. and G.P. were supported by Ontario Graduate Scholarships.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and G.P. conceptualized the idea of the review. S.A., G.P., R.D.K., and N.B. wrote the original draft and S.A., G.P, and R.D.K. prepared the figures and tables. C.S.P. provided edits, suggestions, and critical feedback. The final version of the review was edited by all authors.

Corresponding author

Correspondence to Caroline Schild-Poulter.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S., Parmar, G., Kelly, R.D. et al. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell. Mol. Life Sci. 78, 4589–4613 (2021). https://doi.org/10.1007/s00018-021-03801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03801-1

Keywords

Navigation