Skip to main content

Advertisement

Log in

Links between mitochondrial retrograde response and mitophagy in pathogenic cell signalling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Preservation of mitochondrial quality is paramount for cellular homeostasis. The integrity of mitochondria is guarded by the balanced interplay between anabolic and catabolic mechanisms. The removal of bio-energetically flawed mitochondria is mediated by the process of mitophagy; the impairment of which leads to the accumulation of defective mitochondria which signal the activation of compensatory mechanisms to the nucleus. This process is known as the mitochondrial retrograde response (MRR) and is enacted by Reactive Oxygen Species (ROS), Calcium (Ca2+), ATP, as well as imbalanced lipid and proteostasis. Central to this mitochondria-to-nucleus signalling are the transcription factors (e.g. the nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB) which drive the expression of genes to adapt the cell to the compromised homeostasis. An increased degree of cellular proliferation is among the consequences of the MRR and as such, engagement of mitochondrial-nuclear communication is frequently observed in cancer. Mitophagy and the MRR are therefore interlinked processes framed to, respectively, prevent or compensate for mitochondrial defects.

In this review, we discuss the available knowledge on the interdependency of these processes and their contribution to cell signalling in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu H, Li G, Liu L et al (2013) Regulation and function of mitophagy in development and cancer. Autophagy 9:1720–1736. https://doi.org/10.4161/auto.26550

    Article  CAS  PubMed  Google Scholar 

  2. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188. https://doi.org/10.1016/j.exger.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  3. Herst PM, Rowe MR, Carson GM, Berridge MV (2017) Functional mitochondria in health and disease. Front Endocrinol 8:296

    Article  Google Scholar 

  4. Quirós PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol

  5. Yang D, Kim J (2019) Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells 8:. https://doi.org/https://doi.org/10.3390/cells8030275

  6. Sanchis-Gomar F, García-Giménez JL, Gómez-Cabrera MC, Pallardó FV (2014) Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 20:5619–5633. https://doi.org/10.2174/1381612820666140306095106

    Article  CAS  PubMed  Google Scholar 

  7. Johri A, Chandra A, Flint Beal M (2013) PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med 62:37–46. https://doi.org/10.1016/j.freeradbiomed.2013.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy and Cancer. Cancer Metab 3:4. https://doi.org/10.1186/s40170-015-0130-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guha M, Srinivasan S, Ruthel G et al (2014) Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 33:5238–5250. https://doi.org/10.1038/onc.2013.467

    Article  CAS  PubMed  Google Scholar 

  11. Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15. https://doi.org/10.1016/s1097-2765(04)00179-0

    Article  CAS  PubMed  Google Scholar 

  12. Cardamone MD, Tanasa B, Cederquist CT et al (2018) Mitochondrial retrograde signaling in mammals is mediated by the transcriptional cofactor GPS2 via direct mitochondria-to-nucleus translocation. Mol Cell 69:757-772.e7. https://doi.org/10.1016/j.molcel.2018.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim S, Koh H (2017) Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr 49:. https://doi.org/https://doi.org/10.1007/s10863-017-9705-0

  14. Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185. https://doi.org/10.1146/annurev.genet.40.110405.090613

    Article  CAS  PubMed  Google Scholar 

  15. Carden T, Singh B, Mooga V et al (2017) Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem 292:20694–20706. https://doi.org/10.1074/jbc.M117.797001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132. https://doi.org/10.1016/j.bbrc.2003.09.174

    Article  CAS  PubMed  Google Scholar 

  17. Amuthan G, Biswas G, Zhang SY et al (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20:1910–1920. https://doi.org/10.1093/emboj/20.8.1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Desai R, East DA, Hardy L et al (2020) Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv 6(51):eabc9955: https://doi.org/10.1126/sciadv.abc9955

    Article  CAS  PubMed  Google Scholar 

  19. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521:525–528. https://doi.org/10.1038/nature14300

    Article  CAS  PubMed  Google Scholar 

  20. Matic I, Strobbe D, Di Guglielmo F, Campanella M (2017) Molecular biology digest of cell mitophagy. In: International Review of Cell and Molecular Biology

  21. Ordureau A, Sarraf SA, Duda DM et al (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56:360–375. https://doi.org/10.1016/j.molcel.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong YC, Holzbaur ELF (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci 111:E4439 LP-E4448. https://doi.org/https://doi.org/10.1073/pnas.1405752111

  23. Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795. https://doi.org/10.1007/s00018-015-2087-8

    Article  CAS  PubMed  Google Scholar 

  24. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803. https://doi.org/10.1083/jcb.200809125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185. https://doi.org/10.1038/ncb2422

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Y, Massen S, Terenzio M et al (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288:1099–1113. https://doi.org/10.1074/jbc.M112.399345

    Article  CAS  PubMed  Google Scholar 

  28. Novak I, Dikic I (2011) Autophagy receptors in developmental clearance of mitochondria. Autophagy 7:301–303. https://doi.org/10.4161/auto.7.3.14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murakawa T, Yamaguchi O, Hashimoto A et al (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527. https://doi.org/10.1038/ncomms8527

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koganti P, Levy-Cohen G, Blank M (2018) Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol 8:295. https://doi.org/10.3389/fonc.2018.00295

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41. https://doi.org/10.1038/cr.2013.168

    Article  CAS  Google Scholar 

  32. Roca-Agujetas V, de Dios C, Lestón L et al (2019) Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress. Oxid Med Cell Longev 2019:3809308. https://doi.org/10.1155/2019/3809308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  34. Tang BL (2016) Sirt1 and the Mitochondria. Mol Cells 39:87–95. https://doi.org/https://doi.org/10.14348/molcells.2016.2318

  35. Ploumi C, Daskalaki I, Tavernarakis N (2017) Mitochondrial biogenesis and clearance: a balancing act. FEBS J 284:183–195. https://doi.org/10.1111/febs.13820

    Article  CAS  PubMed  Google Scholar 

  36. Yan C, Li T-S (2018) Dual Role of Mitophagy in Cancer Drug Resistance. Anticancer Res 38:617–621. https://doi.org/10.21873/anticanres.12266

    Article  CAS  PubMed  Google Scholar 

  37. Weigl S, Paradiso A, Tommasi S (2013) Mitochondria and familial predisposition to breast cancer. Curr Genomics 14:195–203. https://doi.org/10.2174/1389202911314030005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zong W-X, Rabinowitz JD, White E (2016) Mitochondria and Cancer. Mol Cell 61:667–676. https://doi.org/10.1016/j.molcel.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17. https://doi.org/10.1186/2049-3002-2-17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hsu C-C, Tseng L-M, Lee H-C (2016) Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood) 241:1281–1295. https://doi.org/10.1177/1535370216641787

    Article  CAS  Google Scholar 

  41. Ribas V, García-Ruiz C, Fernández-Checa JC (2016) Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 5:22. https://doi.org/10.1186/s40169-016-0106-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457. https://doi.org/10.1006/scdb.2001.0282

    Article  CAS  PubMed  Google Scholar 

  43. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519. https://doi.org/10.1073/pnas.94.2.514

    Article  CAS  PubMed  Google Scholar 

  44. Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11:2103–2115. https://doi.org/10.1091/mbc.11.6.2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. da Cunha FM, Torelli NQ, Kowaltowski AJ (2015) Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid Med Cell Longev 2015:482582. https://doi.org/10.1155/2015/482582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang F, Pracheil T, Thornton J, Liu Z (2013) Adenosine triphosphate (ATP) is a candidate signaling molecule in the mitochondria-to-nucleus retrograde response pathway. Genes (Basel) 4:86–100. https://doi.org/10.3390/genes4010086

    Article  CAS  Google Scholar 

  47. Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777. https://doi.org/10.1534/genetics.166.2.765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miceli MV, Jiang JC, Tiwari A et al (2011) Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front Genet 2:102. https://doi.org/10.3389/fgene.2011.00102

    Article  PubMed  Google Scholar 

  49. Arnould T, Michel S, Renard P (2015) Mitochondria retrograde signaling and the UPR mt: Where are we in mammals? Int J Mol Sci 16:18224–18251. https://doi.org/10.3390/ijms160818224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45:731–742. https://doi.org/10.1016/j.molcel.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan S, Avadhani NG (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53:1252–1263. https://doi.org/10.1016/j.freeradbiomed.2012.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19:757–766. https://doi.org/10.1016/j.cmet.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bohovych I, Khalimonchuk O (2016) Sending out an SOS: mitochondria as a signaling hub. Front cell Dev Biol 4:109. https://doi.org/10.3389/fcell.2016.00109

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sullivan LB, Gui DY, Hosios AM et al (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:552–563. https://doi.org/10.1016/j.cell.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668. https://doi.org/10.1056/NEJMra022567

    Article  CAS  PubMed  Google Scholar 

  57. Cantó C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adam J, Yang M, Soga T, Pollard PJ (2014) Rare insights into cancer biology. Oncogene 33:2547–2556. https://doi.org/10.1038/onc.2013.222

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan LB, Martinez-Garcia E, Nguyen H et al (2013) The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell 51:236–248. https://doi.org/10.1016/j.molcel.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Losman J-A, Kaelin WGJ (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–852. https://doi.org/10.1101/gad.217406.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nargund AM, Pellegrino MW, Fiorese CJ et al (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590. https://doi.org/10.1126/science.1223560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Z, Tan M, Xie Z et al (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63. https://doi.org/10.1038/nchembio.495

    Article  CAS  PubMed  Google Scholar 

  63. Trotta AP, Chipuk JE (2017) Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74:1999–2017. https://doi.org/10.1007/s00018-016-2451-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Picard M, Shirihai OS, Gentil BJ, Burelle Y (2013) Mitochondrial morphology transitions and functions: Implications for retrograde signaling? Am J Physiol—Regul Integr Comp Physiol 304:. https://doi.org/https://doi.org/10.1152/ajpregu.00584.2012

  65. Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26(1):39–48. https://doi.org/10.1016/j.cmet.2017.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maycotte P, Marín-Hernández A, Goyri-Aguirre M et al (2017) Mitochondrial dynamics and cancer. Tumour Biol J Int Soc Oncodev Biol Med 39:1010428317698391. https://doi.org/10.1177/1010428317698391

    Article  CAS  Google Scholar 

  67. Ferreira-da-Silva A, Valacca C, Rios E et al (2015) Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS ONE 10:e0122308. https://doi.org/10.1371/journal.pone.0122308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao J, Zhang J, Yu M et al (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824. https://doi.org/10.1038/onc.2012.494

    Article  CAS  PubMed  Google Scholar 

  69. Sánchez-Aragó M, Formentini L, García-Bermúdez J, Cuezva JM (2012) IF1 reprograms energy metabolism and signals the oncogenic phenotype in cancer. Cell Cycle 11:2963–2964. https://doi.org/10.4161/cc.21387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Faccenda D, Campanella M (2012) Molecular Regulation of the mitochondrial F(1)F(o)-ATPsynthase: physiological and pathological significance of the inhibitory factor 1 (IF(1)). Int J Cell Biol 2012:367934. https://doi.org/10.1155/2012/367934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. García-Bermúdez J, Cuezva JM (2016) The ATPase inhibitory factor 1 (IF1): a master regulator of energy metabolism and of cell survival. Biochim Biophys Acta 1857:1167–1182. https://doi.org/10.1016/j.bbabio.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  72. Sánchez-Cenizo L, Formentini L, Aldea M et al (2010) Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285:25308–25313. https://doi.org/10.1074/jbc.M110.146480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Faccenda D, Nakamura J, Gorini G et al (2017) Control of mitochondrial remodeling by the ATPase inhibitory factor 1 unveils a pro-survival relay via OPA1. Cell Rep 18:1869–1883. https://doi.org/10.1016/j.celrep.2017.01.070

    Article  CAS  PubMed  Google Scholar 

  74. Faccenda D, Tan CH, Seraphim A et al (2013) IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ 20:686–697. https://doi.org/10.1038/cdd.2012.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gatliff J, Campanella M (2016) TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem J 473(2):107–121. https://doi.org/10.1042/BJ20150899

    Article  CAS  PubMed  Google Scholar 

  76. Gatliff J, East D, Crosby J et al (2014) TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 10:2279–2296. https://doi.org/10.4161/15548627.2014.991665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our genuine gratitude to Dr. Previdelli, Miss Jemma Gane and Miss Parmis Vadafar for carefully reading the manuscript and providing feedback. The researches activities lead by M.C. on the topics of this script are supported by: The European Research Council Consolidator Grant COG 2018—819600_FIRM; AIRC-MFAG 21903; The Petplan Charitable Trust; LAM-Bighi Grant Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelangelo Campanella.

Ethics declarations

Conflict of interest

There are no competing interests of any nature to report. This research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobbe, D., Sharma, S. & Campanella, M. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signalling. Cell. Mol. Life Sci. 78, 3767–3775 (2021). https://doi.org/10.1007/s00018-021-03770-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03770-5

Keywords

Navigation