Skip to main content
Log in

Stress granule subtypes: an emerging link to neurodegeneration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hnisz D, Shrinivas K, Young RA et al (2017) A phase separation model for transcriptional control. Cell 169:13–23. https://doi.org/10.1016/j.cell.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Treeck B, Parker R (2018) Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174:791–802. https://doi.org/10.1016/j.cell.2018.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fay MM, Anderson PJ (2018) The role of RNA in biological phase separations. J Mol Biol 430:4685–4701. https://doi.org/10.1016/j.jmb.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ivanov P, Kedersha N, Anderson P (2018) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032813

    Article  Google Scholar 

  5. Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38:494–506. https://doi.org/10.1016/j.tibs.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  6. Wolozin B (2014) Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov Med 17:47–52

    PubMed  PubMed Central  Google Scholar 

  7. Wolozin B, Ivanov P (2019) Stress granules and neurodegeneration. Nat Rev Neurosci 20:649–666. https://doi.org/10.1038/s41583-019-0222-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ryan VH, Fawzi NL (2019) Physiological, pathological, and targetable membraneless organelles in neurons. Trends Neurosci 42:693–708. https://doi.org/10.1016/j.tins.2019.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56. https://doi.org/10.1186/1750-1326-7-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Voronina E, Seydoux G, Sassone-Corsi P (2011) RNA granules in germ cells subject collections. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a002774

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808. https://doi.org/10.1083/jcb.200512082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao M, Arkov AL (2013) Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 80:610–623. https://doi.org/10.1002/mrd.22115

    Article  CAS  PubMed  Google Scholar 

  14. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300. https://doi.org/10.1146/annurev.cellbio.16.1.273

    Article  CAS  PubMed  Google Scholar 

  15. Machyna M, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4:17–34. https://doi.org/10.1002/wrna.1139

    Article  CAS  PubMed  Google Scholar 

  16. Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884. https://doi.org/10.1083/jcb.200502088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moujaber O, Stochaj U (2018) Cytoplasmic RNA granules in somatic maintenance. Gerontology 64:485–494. https://doi.org/10.1159/000488759

    Article  CAS  PubMed  Google Scholar 

  18. Shigeoka T, Jung H, Jung J et al (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166:181–192. https://doi.org/10.1016/j.cell.2016.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mittag T, Parker R (2018) Multiple modes of protein–protein interactions promote RNP granule assembly. J Mol Biol 430:4636–4649. https://doi.org/10.1016/j.jmb.2018.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Treeck B, Parker R (2019) Principles of stress granules revealed by imaging approaches. Cold Spring Harb Perspect Biol 11:a033068. https://doi.org/10.1101/cshperspect.a033068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavut A, Raveh D (2012) Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability. PLoS Genet 8:e1002527. https://doi.org/10.1371/journal.pgen.1002527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parker R, Sheth U (2007) P Bodies and the control of mRNA Translation And Degradation. Mol Cell 25:635–646. https://doi.org/10.1016/j.molcel.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  23. Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870. https://doi.org/10.1016/j.bbagrm.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  24. Kroschwald S, Maharana S, Mateju D et al (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife 4:e06807. https://doi.org/10.7554/eLife.06807

    Article  PubMed  PubMed Central  Google Scholar 

  25. Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286–a012286. https://doi.org/10.1101/cshperspect.a012286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kedersha N, Cho MR, Li W et al (2000) Dynamic shuttling of Tia-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151:1257–1268. https://doi.org/10.1083/jcb.151.6.1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moutaoufik MT, El Fatimy R, Nassour H et al (2014) UVC-induced stress granules in mammalian cells. PLoS One 9:e112742. https://doi.org/10.1371/journal.pone.0112742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hyman AA, Weber CA, Jülicher F (2014) Liquid–liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58. https://doi.org/10.1146/annurev-cellbio-100913-013325

    Article  CAS  PubMed  Google Scholar 

  29. Shin Y, Brangwynne C (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357):eaaf4382. https://doi.org/10.1126/science.aaf4382

    Article  PubMed  Google Scholar 

  30. Li P, Banjade S, Cheng H-C et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340. https://doi.org/10.1038/nature10879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  32. Van Treeck B, Protter DSW, Matheny T et al (2018) RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci USA 115:2734–2739. https://doi.org/10.1073/pnas.1800038115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paulson H (2018) Repeat expansion diseases. Handb Clin Neurol 147:105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kato M, Han TW, Xie S et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767. https://doi.org/10.1016/J.CELL.2012.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han TW, Kato M, Xie S et al (2012) Cell-free Formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–779. https://doi.org/10.1016/j.cell.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  36. Uversky VN (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30. https://doi.org/10.1016/j.sbi.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  37. Kedersha NL, Gupta M, Li W et al (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Panas MD, Ivanov P, Anderson P (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 215:313–323. https://doi.org/10.1083/jcb.201609081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weber SC, Brangwynne CP (2012) Getting RNA and Protein in Phase. Cell 149:1188–1191. https://doi.org/10.1016/j.cell.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  40. Harrison AF, Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474:1417–1438. https://doi.org/10.1042/BCJ20160499

    Article  CAS  PubMed  Google Scholar 

  41. Monahan Z, Shewmaker F, Pandey UB (2016) Stress granules at the intersection of autophagy and ALS. Brain Res 1649:189–200. https://doi.org/10.1016/j.brainres.2016.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10:a032870. https://doi.org/10.1101/cshperspect.a032870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Advani VM, Ivanov P (2019) Translational control under stress: reshaping the translatome. BioEssays 41:1900009. https://doi.org/10.1002/bies.201900009

    Article  CAS  Google Scholar 

  44. Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ivanov P, Kedersha N, Anderson P (2019) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 11:a032813. https://doi.org/10.1101/cshperspect.a032813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wheeler JR, Matheny T, Jain S et al (2016) Distinct stages in stress granule assembly and disassembly. Elife. https://doi.org/10.7554/eLife.18413

    Article  PubMed  PubMed Central  Google Scholar 

  48. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679. https://doi.org/10.1016/j.tcb.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Padrón A, Iwasaki S, Ingolia NT (2019) Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol Cell 75:875–887.e5. https://doi.org/10.1016/J.MOLCEL.2019.07.030

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jain S, Wheeler JR, Walters RW et al (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498. https://doi.org/10.1016/j.cell.2015.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bley N, Lederer M, Pfalz B et al (2015) Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res 43:e26–e26. https://doi.org/10.1093/nar/gku1275

    Article  CAS  PubMed  Google Scholar 

  52. Mazroui R, Di Marco S, Kaufman RJ, Gallouzi I-E (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18:2603–2618. https://doi.org/10.1091/mbc.e06-12-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arimbasseri AG, Blewett NH, Iben JR et al (2015) RNA Polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet 11:e1005671. https://doi.org/10.1371/journal.pgen.1005671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cherkasov V, Hofmann S, Druffel-Augustin S et al (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23:2452–2462. https://doi.org/10.1016/J.CUB.2013.09.058

    Article  CAS  PubMed  Google Scholar 

  55. Tsai W-C, Gayatri S, Reineke LC et al (2016) Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem 291:22671–22685. https://doi.org/10.1074/jbc.M116.739573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohn T, Kedersha N, Hickman T et al (2008) A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol 10:1224–1231. https://doi.org/10.1038/ncb1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walters RW, Muhlrad D, Garcia J, Parker R (2015) Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21:1660–1671. https://doi.org/10.1261/rna.053116.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cipolat Mis MS, Brajkovic S, Frattini E et al (2016) Autophagy in motor neuron disease: key pathogenetic mechanisms and therapeutic targets. Mol Cell Neurosci 72:84–90. https://doi.org/10.1016/J.MCN.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  59. Lee K-H, Zhang P, Kim HJ et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–788.e17. https://doi.org/10.1016/J.CELL.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anders M, Chelysheva I, Goebel I et al (2018) Dynamic m6A methylation facilitates mRNA triaging to stress granules. Life Sci Alliance 1:e201800113. https://doi.org/10.26508/lsa.201800113

    Article  PubMed  PubMed Central  Google Scholar 

  61. Aulas A, Fay MM, Lyons SM et al (2017) Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 130:927–937. https://doi.org/10.1242/jcs.199240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujimura K, Sasaki AT, Anderson P (2012) Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res 40:8099–8110. https://doi.org/10.1093/nar/gks566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reineke LC, Neilson JR (2019) Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochem Pharmacol 162:123–131. https://doi.org/10.1016/j.bcp.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  64. Guzikowski AR, Chen YS, Zid BM (2019) Stress-induced mRNP granules: form and function of processing bodies and stress granules. Wiley Interdiscip Rev RNA 10:e1524. https://doi.org/10.1002/wrna.1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331. https://doi.org/10.1126/science.1230593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen C-L, Perrimon N (2017) Proximity-dependent labeling methods for proteomic profiling in living cells. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/WDEV.272

    Article  PubMed  PubMed Central  Google Scholar 

  68. Markmiller S, Soltanieh S, Server KL et al (2018) Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172:590–604.e13. https://doi.org/10.1016/j.cell.2017.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Youn J-Y, Dunham WH, Hong SJ et al (2018) High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell 69:517–532.e11. https://doi.org/10.1016/j.molcel.2017.12.020

    Article  CAS  PubMed  Google Scholar 

  70. Khong A, Matheny T, Jain S et al (2017) The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68:808–820.e5. https://doi.org/10.1016/j.molcel.2017.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Namkoong S, Ho A, Woo YM et al (2018) Systematic characterization of stress-induced RNA granulation. Mol Cell 70:175–187.e8. https://doi.org/10.1016/j.molcel.2018.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Avni D, Shama S, Loreni F, Meyuhas O (1994) Vertebrate mRNAs with a 5′-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol Cell Biol 14:3822–3833. https://doi.org/10.1128/MCB.14.6.3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davuluri RV (2000) CART classification of human 5′ UTR sequences. Genome Res 10:1807–1816. https://doi.org/10.1101/gr.GR-1460R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rayman JB, Kandel ER (2017) TIA-1 is a functional prion-like protein. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a030718

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kawakami A, Tian Q, Duan X et al (1992) Identification and functional characterization of a TIA-1-related nucleolysin. Proc Natl Acad Sci USA 89:8681–8685. https://doi.org/10.1073/pnas.89.18.8681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dember LM, Kim ND, Liu KQ, Anderson P (1996) Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem 271:2783–2788. https://doi.org/10.1074/jbc.271.5.2783

    Article  CAS  PubMed  Google Scholar 

  77. Anderson P (2008) Post-transcriptional control of cytokine production. Nat Immunol 9:353–359. https://doi.org/10.1038/ni1584

    Article  CAS  PubMed  Google Scholar 

  78. Gueydan C, Droogmans L, Chalon P et al (1999) Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J Biol Chem 274:2322–2326. https://doi.org/10.1074/jbc.274.4.2322

    Article  CAS  PubMed  Google Scholar 

  79. Damgaard CK, Lykke-Andersen J (2011) Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR. Genes Dev 25:2057–2068. https://doi.org/10.1101/gad.17355911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115:3227–3234

    CAS  PubMed  Google Scholar 

  81. Bounedjah O, Desforges B, Wu T-D et al (2014) Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res 42:8678–8691. https://doi.org/10.1093/nar/gku582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ivanov P, Kedersha N, Anderson P (2011) Stress puts TIA on TOP. Genes Dev 25:2119–2124. https://doi.org/10.1101/gad.17838411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Danan C, Manickavel S, Hafner M (2016) PAR-CLIP: a method for transcriptome-wide identification of RNA binding protein interaction sites. Methods Mol Biol 1358:153–173. https://doi.org/10.1007/978-1-4939-3067-8_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee ASY, Kranzusch PJ, Cate JHD (2015) eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522:111–114. https://doi.org/10.1038/nature14267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holt CE, Martin KC, Schuman EM (2019) Local translation in neurons: visualization and function. Nat Struct Mol Biol 26:557–566. https://doi.org/10.1038/s41594-019-0263-5

    Article  CAS  PubMed  Google Scholar 

  86. Rangaraju V, tom Dieck S, Schuman EM (2017) Local translation in neuronal compartments: how local is local? EMBO Rep 18:693–711. https://doi.org/10.15252/embr.201744045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shiina N, Shinkura K, Tokunaga M (2005) A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation. J Neurosci 25:4420–4434. https://doi.org/10.1523/JNEUROSCI.0382-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barbee SA, Estes PS, Cziko A-M et al (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009. https://doi.org/10.1016/J.NEURON.2006.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Elbaum-Garfinkle S (2019) Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem 294:7160–7168. https://doi.org/10.1074/jbc.REV118.001188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248. https://doi.org/10.1038/nrd3050

    Article  CAS  PubMed  Google Scholar 

  91. Bourdenx M, Koulakiotis NS, Sanoudou D et al (2017) Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: examples of amyloidopathies, tauopathies and synucleinopathies. Prog Neurobiol 155:171–193. https://doi.org/10.1016/j.pneurobio.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  92. Orr HT, Chung M, Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226. https://doi.org/10.1038/ng0793-221

    Article  CAS  PubMed  Google Scholar 

  93. Banfi S, Servadio A, Chung MY et al (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520. https://doi.org/10.1038/ng0894-513

    Article  CAS  PubMed  Google Scholar 

  94. Mackenzie IR, Nicholson AM, Sarkar M et al (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95:808–816.e9. https://doi.org/10.1016/j.neuron.2017.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim HJ, Kim NC, Wang Y-D et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. https://doi.org/10.1038/nature11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Svetoni F, Frisone P, Paronetto MP (2016) Role of FET proteins in neurodegenerative disorders. RNA Biol 13:1089–1102. https://doi.org/10.1080/15476286.2016.1211225

    Article  PubMed  PubMed Central  Google Scholar 

  97. Osborne RJ, Lin X, Welle S et al (2009) Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum Mol Genet 18:1471–1481. https://doi.org/10.1093/hmg/ddp058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Timchenko NA, Cai ZJ, Welm AL et al (2001) RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem 276:7820–7826. https://doi.org/10.1074/jbc.M005960200

    Article  CAS  PubMed  Google Scholar 

  99. Ward AJ, Rimer M, Killian JM et al (2010) CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet 19:3614–3622. https://doi.org/10.1093/hmg/ddq277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kanadia RN, Shin J, Yuan Y et al (2006) Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci USA 103:11748–11753. https://doi.org/10.1073/pnas.0604970103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sofola OA, Jin P, Qin Y et al (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55:565–571. https://doi.org/10.1016/j.neuron.2007.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jin P, Duan R, Qurashi A et al (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55:556–564. https://doi.org/10.1016/j.neuron.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591. https://doi.org/10.1016/j.tips.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  104. Buchan JR, Kolaitis R-M, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474. https://doi.org/10.1016/j.cell.2013.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123. https://doi.org/10.1038/ncb2407

    Article  CAS  PubMed  Google Scholar 

  106. Wong YC, Holzbaur ELF (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA 111:E4439–E4448. https://doi.org/10.1073/pnas.1405752111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwab C, Yu S, McGeer EG, McGeer PL (2012) Optineurin in Huntington’s disease intranuclear inclusions. Neurosci Lett 506:149–154. https://doi.org/10.1016/J.NEULET.2011.10.070

    Article  CAS  PubMed  Google Scholar 

  108. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736. https://doi.org/10.1016/J.CELL.2013.07.038

    Article  CAS  PubMed  Google Scholar 

  109. Coady TH, Manley JL (2015) ALS mutations in TLS/FUS disrupt target gene expression. Genes Dev 29:1696–1706. https://doi.org/10.1101/gad.267286.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qiu H, Lee S, Shang Y et al (2014) ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Investig 124:981–999. https://doi.org/10.1172/JCI72723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ryu H-H, Jun M-H, Min K-J et al (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35:2822–2831. https://doi.org/10.1016/j.neurobiolaging.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  112. Lee J-A (2015) Autophagy manages disease-associated stress granules. Oncotarget 6:30421

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lagier-Tourenne C, Polymenidou M, Hutt KR et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497. https://doi.org/10.1038/nn.3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. https://doi.org/10.1093/hmg/ddq137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dormann D, Haass C (2011) TDP-43 and FUS: a nuclear affair. Trends Neurosci 34:339–348. https://doi.org/10.1016/j.tins.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  116. Acosta JR, Goldsbury C, Winnick C et al (2014) Mutant human FUS is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells. PLoS One 9:e90572. https://doi.org/10.1371/journal.pone.0090572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barmada SJ, Skibinski G, Korb E et al (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649. https://doi.org/10.1523/JNEUROSCI.4988-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee S, Levin M (2014) Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Research 3:132. https://doi.org/10.12688/f1000research.4436.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang K, Daigle JG, Cunningham KM et al (2018) Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173:958–971.e17. https://doi.org/10.1016/j.cell.2018.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo L, Kim HJ, Wang H et al (2018) Nuclear-import receptors reverse aberrant phase transitions of rna-binding proteins with prion-like domains. Cell 173:677–692.e20. https://doi.org/10.1016/j.cell.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Solomon DA, Stepto A, Au WH et al (2018) A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain 141:2908–2924. https://doi.org/10.1093/brain/awy241

    Article  PubMed  PubMed Central  Google Scholar 

  122. Steyaert J, Scheveneels W, Vanneste J et al (2018) FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins. Hum Mol Genet 27:4103–4116. https://doi.org/10.1093/hmg/ddy303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khalil B, Morderer D, Price PL et al (2018) mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 1693:75–91. https://doi.org/10.1016/j.brainres.2018.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Burguete AS, Almeida S, Gao F-B et al (2015) GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. Elife 4:e08881. https://doi.org/10.7554/eLife.08881

    Article  PubMed  PubMed Central  Google Scholar 

  125. Narayanan RK, Mangelsdorf M, Panwar A et al (2013) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Front Degener 14:252–260. https://doi.org/10.3109/21678421.2012.734520

    Article  CAS  Google Scholar 

  126. Sephton CF, Cenik C, Kucukural A et al (2011) Identification of neuronal RNA Targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215. https://doi.org/10.1074/jbc.M110.190884

    Article  CAS  PubMed  Google Scholar 

  127. Endo R, Takashima N, Nekooki-Machida Y et al (2018) TAR DNA-binding protein 43 and disrupted in schizophrenia 1 coaggregation disrupts dendritic local translation and mental function in frontotemporal lobar degeneration. Biol Psychiatry 84:509–521. https://doi.org/10.1016/j.biopsych.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Coyne AN, Siddegowda BB, Estes PS et al (2014) Futsch/MAP1B mRNA is a translational target of TDP-43 and is neuroprotective in a drosophila model of amyotrophic lateral sclerosis. J Neurosci 34:15962–15974. https://doi.org/10.1523/JNEUROSCI.2526-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alami NH, Smith RB, Carrasco MA et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536–543. https://doi.org/10.1016/j.neuron.2013.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cohen TJ, Hwang AW, Restrepo CR et al (2015) An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6:5845. https://doi.org/10.1038/NCOMMS6845

    Article  CAS  PubMed  Google Scholar 

  131. Chen Y, Cohen TJ (2019) Aggregation of the nucleic acid-binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. J Biol Chem 294:3696–3706. https://doi.org/10.1074/jbc.RA118.006351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu M, Zhu L, Liu J et al (2013) Characterization of β-domains in C-terminal fragments of TDP-43 by scanning tunneling microscopy. J Struct Biol 181:11–16. https://doi.org/10.1016/j.jsb.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  133. Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120. https://doi.org/10.1021/pr901076y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vanderweyde T, Yu H, Varnum M et al (2012) Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci 32:8270–8283. https://doi.org/10.1523/JNEUROSCI.1592-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378. https://doi.org/10.1083/jcb.101.4.1371

    Article  CAS  PubMed  Google Scholar 

  136. Hoover BR, Reed MN, Su J et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081. https://doi.org/10.1016/j.neuron.2010.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Apicco DJ, Ash PEA, Maziuk B et al (2018) Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 21:72–80. https://doi.org/10.1038/s41593-017-0022-z

    Article  CAS  PubMed  Google Scholar 

  138. Trojanowski JQ, Schuck T, Schmidt ML, Lee VM (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215. https://doi.org/10.1177/37.2.2492045

    Article  CAS  PubMed  Google Scholar 

  139. Kobayashi S, Tanaka T, Soeda Y et al (2017) Local somatodendritic translation and hyperphosphorylation of tau protein triggered by AMPA and NMDA receptor stimulation. EBioMedicine 20:120–126. https://doi.org/10.1016/J.EBIOM.2017.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  140. Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine-searching for the connections. Br J Pharmacol 167:324–352. https://doi.org/10.1111/j.1476-5381.2012.02057.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vanderweyde T, Apicco DJ, Youmans-Kidder K et al (2016) Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep 15:1455–1466. https://doi.org/10.1016/j.celrep.2016.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Silva JM, Rodrigues S, Sampaio-Marques B et al (2019) Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ 26:1411–1427. https://doi.org/10.1038/s41418-018-0217-1

    Article  CAS  PubMed  Google Scholar 

  143. Gunawardana CG, Mehrabian M, Wang X et al (2015) The human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol Cell Proteom 14:3000–3014. https://doi.org/10.1074/mcp.M115.050724

    Article  CAS  Google Scholar 

  144. Maziuk BF, Apicco DJ, Cruz AL et al (2018) RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun 6:71. https://doi.org/10.1186/s40478-018-0574-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Meier S, Bell M, Lyons DN et al (2016) Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. J Neurosci 36:1001–1007. https://doi.org/10.1523/JNEUROSCI.3029-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588:4297–4304. https://doi.org/10.1016/j.febslet.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lyons SM, Fay MM, Akiyama Y et al (2017) RNA biology of angiogenin: current state and perspectives. RNA Biol 14:171–178. https://doi.org/10.1080/15476286.2016.1272746

    Article  PubMed  Google Scholar 

  148. Ivanov P, Emara MM, Villen J et al (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613–623. https://doi.org/10.1016/j.molcel.2011.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Emara MM, Ivanov P, Hickman T et al (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968. https://doi.org/10.1074/jbc.M109.077560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ivanov P, O’Day E, Emara MM et al (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci 111:18201–18206. https://doi.org/10.1073/pnas.1407361111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lyons SM, Achorn C, Kedersha NL et al (2016) YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 44:6949–6960. https://doi.org/10.1093/nar/gkw418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Suryanarayana T, Uppala JK, Garapati UK (2012) Interaction of cytochrome c with tRNA and other polynucleotides. Mol Biol Rep 39:9187–9191. https://doi.org/10.1007/s11033-012-1791-9

    Article  CAS  PubMed  Google Scholar 

  153. Saikia M, Jobava R, Parisien M et al (2014) Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34:2450–2463. https://doi.org/10.1128/MCB.00136-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Steidinger TU, Standaert DG, Yacoubian TA (2011) A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem 116:334–341. https://doi.org/10.1111/j.1471-4159.2010.07112.x

    Article  CAS  PubMed  Google Scholar 

  155. Gallo J-M, Jin P, Thornton CA et al (2005) The role of RNA and RNA processing in neurodegeneration. J Neurosci 25:10372–10375. https://doi.org/10.1523/JNEUROSCI.3453-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Todd PK, Paulson HL (2009) RNA mediated neurodegeneration in repeat expansion disorders. Ann Neurol. https://doi.org/10.1002/ana.21948

    Article  Google Scholar 

  157. Matsuura T, Yamagata T, Burgess DL et al (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194. https://doi.org/10.1038/79911

    Article  CAS  PubMed  Google Scholar 

  158. White MC, Gao R, Xu W et al (2010) Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCδ to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6:e1000984. https://doi.org/10.1371/journal.pgen.1000984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McLaughlin BA, Spencer C, Eberwine J (1996) CAG trinucleotide RNA repeats interact with RNA-binding proteins. Am J Hum Genet 59:561–569

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Li L-B, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453:1107–1111. https://doi.org/10.1038/nature06909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Warrick JM, Paulson HL, Gray-Board GL et al (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93:939–949. https://doi.org/10.1016/s0092-8674(00)81200-3

    Article  CAS  PubMed  Google Scholar 

  162. de Mezer M, Wojciechowska M, Napierala M et al (2011) Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res 39:3852–3863. https://doi.org/10.1093/nar/gkq1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fay MM, Anderson PJ, Ivanov P (2017) ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep 21:3573–3584. https://doi.org/10.1016/j.celrep.2017.11.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven C (2017) Relationship between C9orf72 repeat size and clinical phenotype. Curr Opin Genet Dev 44:117–124. https://doi.org/10.1016/j.gde.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  166. Zu T, Liu Y, Banez-Coronel M et al (2013) RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci 110:E4968–E4977. https://doi.org/10.1073/pnas.1315438110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mori K, Arzberger T, Grässer FA et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126:881–893. https://doi.org/10.1007/s00401-013-1189-3

    Article  CAS  PubMed  Google Scholar 

  168. Gendron TF, Bieniek KF, Zhang Y-J et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844. https://doi.org/10.1007/s00401-013-1192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tabet R, Schaeffer L, Freyermuth F et al (2018) CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun 9:152. https://doi.org/10.1038/s41467-017-02643-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. DeJesus-Hernandez M, Finch NA, Wang X et al (2017) In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathol 134:255–269. https://doi.org/10.1007/s00401-017-1725-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hartmann H, Hornburg D, Czuppa M et al (2018) Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Sci Alliance 1:e201800070. https://doi.org/10.26508/lsa.201800070

    Article  PubMed  PubMed Central  Google Scholar 

  173. Moens TG, Niccoli T, Wilson KM et al (2019) C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol 137:487–500. https://doi.org/10.1007/s00401-018-1946-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Babić Leko M, Župunski V, Kirincich J et al (2019) Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol 2019:1–18. https://doi.org/10.1155/2019/2909168

    Article  Google Scholar 

  175. Becker LA, Huang B, Bieri G et al (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367–371. https://doi.org/10.1038/nature22038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ma T, Trinh MA, Wexler AJ et al (2013) Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci 16:1299–1305. https://doi.org/10.1038/nn.3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Moreno JA, Radford H, Peretti D et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–511. https://doi.org/10.1038/nature11058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shen H-Y, He J-C, Wang Y et al (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969. https://doi.org/10.1074/jbc.M505524200

    Article  CAS  PubMed  Google Scholar 

  179. Shorter J (2017) Designer protein disaggregases to counter neurodegenerative disease. Curr Opin Genet Dev 44:1–8. https://doi.org/10.1016/j.gde.2017.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Menzies FM, Garcia-Arencibia M, Imarisio S et al (2015) Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ 22:433–444. https://doi.org/10.1038/cdd.2014.151

    Article  CAS  PubMed  Google Scholar 

  181. Sarkar S, Krishna G, Imarisio S et al (2008) A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet 17:170–178. https://doi.org/10.1093/hmg/ddm294

    Article  CAS  PubMed  Google Scholar 

  182. Staats KA, Hernandez S, Schönefeldt S et al (2013) Rapamycin increases survival in ALS mice lacking mature lymphocytes. Mol Neurodegener 8:31. https://doi.org/10.1186/1750-1326-8-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Uddin MS, Stachowiak A, Al MA et al (2018) Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci 10:04. https://doi.org/10.3389/fnagi.2018.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Caccamo A, Maldonado MA, Majumder S et al (2011) Naturally secreted amyloid-β increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 286:8924–8932. https://doi.org/10.1074/jbc.M110.180638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Caccamo A, Majumder S, Richardson A et al (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120. https://doi.org/10.1074/jbc.M110.100420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979. https://doi.org/10.1371/journal.pone.0009979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Investig 121:1231–1241. https://doi.org/10.1172/JCI44145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lee H-J, Yoon Y-S, Lee S-J (2018) Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis 9:712. https://doi.org/10.1038/s41419-018-0749-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Castillo K, Nassif M, Valenzuela V et al (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9:1308–1320. https://doi.org/10.4161/auto.25188

    Article  CAS  PubMed  Google Scholar 

  190. Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ et al (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438. https://doi.org/10.1016/j.nbd.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  191. Du J, Liang Y, Xu F et al (2013) Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol 65:1753–1756. https://doi.org/10.1111/jphp.12108

    Article  CAS  PubMed  Google Scholar 

  192. Sarkar S, Davies JE, Huang Z et al (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652. https://doi.org/10.1074/jbc.M609532200

    Article  CAS  PubMed  Google Scholar 

  193. Wobst HJ, Wesolowski SS, Chadchankar J et al (2017) Cytoplasmic relocalization of TAR DNA-binding protein 43 is not sufficient to reproduce cellular pathologies associated with ALS in vitro. Front Mol Neurosci 10:46. https://doi.org/10.3389/fnmol.2017.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pesiridis GS, Lee VM-Y, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18:R156–R162. https://doi.org/10.1093/hmg/ddp303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim SH, Shi Y, Hanson KA et al (2009) Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem 284:8083–8092. https://doi.org/10.1074/jbc.M808064200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hans F, Eckert M, von Zweydorf F et al (2018) Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 293:16083–16099. https://doi.org/10.1074/jbc.RA118.003440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jiang L-L, Zhao J, Yin X-F et al (2016) Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci Rep 6:23928. https://doi.org/10.1038/srep23928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schmidt HB, Rohatgi R (2016) In vivo formation of vacuolated multi-phase compartments lacking membranes. Cell Rep 16:1228–1236. https://doi.org/10.1016/j.celrep.2016.06.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. McDonald KK, Aulas A, Destroismaisons L et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410. https://doi.org/10.1093/hmg/ddr021

    Article  CAS  PubMed  Google Scholar 

  200. Patel A, Lee HO, Jawerth L et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/J.CELL.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  201. Bosco DA, Lemay N, Ko HK et al (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19:4160–4175. https://doi.org/10.1093/hmg/ddq335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shelkovnikova TA, Robinson HK, Connor-Robson N, Buchman VL (2013) Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 12:3194–3202. https://doi.org/10.4161/cc.26241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lenzi J, De Santis R, de Turris V et al (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech 8:755–766. https://doi.org/10.1242/dmm.020099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gui X, Luo F, Li Y et al (2019) Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun 10:2006. https://doi.org/10.1038/s41467-019-09902-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shorter J, Taylor JP (2013) Disease mutations in the prion-like domains of hnRNPA1 and hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly. Rare Dis 1:e25200. https://doi.org/10.4161/rdis.25200

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kapeli K, Martinez FJ, Yeo GW (2017) Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet 136:1193–1214. https://doi.org/10.1007/s00439-017-1830-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Couthouis J, Hart MP, Erion R et al (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21:2899–2911. https://doi.org/10.1093/hmg/dds116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Couthouis J, Raphael AR, Daneshjou R, Gitler AD (2014) Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet 10:e1004704. https://doi.org/10.1371/journal.pgen.1004704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by National Institutes of Health (R01 GM126150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivek M. Advani or Pavel Ivanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Advani, V.M., Ivanov, P. Stress granule subtypes: an emerging link to neurodegeneration. Cell. Mol. Life Sci. 77, 4827–4845 (2020). https://doi.org/10.1007/s00018-020-03565-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03565-0

Keywords

Navigation