Skip to main content

Advertisement

Log in

Transcriptional regulation of Treg homeostasis and functional specification

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

CD4+Foxp3+ regulatory T (Treg) cells are key players in keeping excessive inflammation in check. Mounting evidence has shown that Treg cells exert much more diverse functions in both immunological and non-immunological processes. The development, maintenance and functional specification of Treg cells are regulated by multilayered factors, including antigens and TCR signaling, cytokines, epigenetic modifiers and transcription factors (TFs). In the review, we will focus on TFs by summarizing their unique and redundant roles in Treg cells under physiological and pathophysiological conditions. We will also discuss the recent advances of Treg trajectories between lymphoid organs and non-lymphoid tissues. This review will provide an updated view of the newly identified TFs and new functions of known TFs in Treg biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

Akt:

AKT serine/threonine kinase 1

AP1:

Activator protein 1

ATF:

Activating transcription factor

Bach2:

BTB domain and CNC homolog 2

BATF:

Basic leucine zipper ATF-like transcription factor

Bcl10:

B-cell lymphoma/leukemia 10

Bcl11b:

B-cell lymphoma/leukemia 11b

Bcl6:

B-cell lymphoma/leukemia 6

Blimp1:

B-lymphocyte-induced maturation protein 1

CARD11:

Caspase recruitment domain family member 11

Cbfβ:

Core-binding factor subunit beta

c-Maf:

V-maf musculoaponeurotic fibrosarcoma oncogene homolog

CREB:

CAMP responsive element binding protein 1

c-Rel:

REL proto-oncogene, NF-κB subunit

CTLA4:

Cytotoxic T-lymphocyte associated protein 4

DOCK8:

Dedicator of cytokinesis 8

E47:

Transcription factor 3

Eos:

IKAROS family zinc finger 4

EZH2:

Enhancer of Zeste homolog 2

Foxo1:

Forkhead box O1

Foxo3:

Forkhead box O3

Foxp1:

Forkhead box P1

Foxp3:

Forkhead box P3

GATA1:

GATA binding protein 1

GATA3:

GATA binding protein 3

Helios:

IKAROS family zinc finger 2

HIF1α:

Hypoxia inducible factor 1 subunit alpha

Id3:

Inhibitor of DNA binding 3, HLH protein

IKKβ:

Inhibitor of nuclear factor kappa B kinase subunit beta

IRF4:

Interferon regulatory factor 4

IκB:

Inhibitor of nuclear factor kappa B

JunB:

JunB proto-oncogene, AP-1 transcription factor subunit

Klrg1:

Killer cell lectin like receptor G1

LEF1:

Lymphoid enhancer binding factor 1

MALT1:

Mucosa-associated lymphoid tissue lymphoma translocation protein 1

NFAT:

Nuclear factor of activated T cells

Nfil3:

Nuclear factor, interleukin 3 regulated

NF-κB:

Nuclear factor kappa B subunit 1

Nr4a:

Nuclear receptor subfamily 4 group A

PPARγ:

Peroxisome proliferator-activated receptor gamma

Rbpj:

Recombination signal binding protein for immunoglobulin kappa J region

RelA:

RELA proto-oncogene, NF-κB subunit

RORγt:

RAR-related orphan receptor gamma

Runx1:

RUNX family transcription factor 1

Satb1:

SATB homeobox 1

SMAD:

Sma- and mad-related protein

SOCS1:

Suppressor of cytokine signaling 1

SOCS3:

Suppressor of cytokine signaling 3

Spi-B:

Spi-B transcription factor

STAT5:

Signal transducer and activator of transcription 5

T-bet:

T-box expressed in T cells

TCF1:

T-cell factor 1

References

  1. Lee YS, Wollam J, Olefsky JM (2018) An integrated view of immunometabolism. Cell 172:22–40

    CAS  Google Scholar 

  2. Shalapour S, Karin M (2015) Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Invest 125:3347–3355

    Google Scholar 

  3. Pentcheva-Hoang T, Corse E, Allison JP (2009) Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev 229:67–87

    CAS  Google Scholar 

  4. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    CAS  Google Scholar 

  5. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    CAS  Google Scholar 

  6. Panduro M, Benoist C, Mathis D (2016) Tissue tregs. Annu Rev Immunol 34:609–633

    CAS  Google Scholar 

  7. Whibley N, Tucci A, Powrie F (2019) Regulatory T cell adaptation in the intestine and skin. Nat Immunol 20:386–396

    CAS  Google Scholar 

  8. Raffin C, Vo LT, Bluestone JA (2020) Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172

    CAS  Google Scholar 

  9. Tada T, Taniguchi M, Takemori T (1975) Properties of primed suppressor T cells and their products. Transplant Rev 26:106–129

    CAS  Google Scholar 

  10. Green DR, Flood PM, Gershon RK (1983) Immunoregulatory T-cell pathways. Annu Rev Immunol 1:439–463

    CAS  Google Scholar 

  11. Dorf ME, Benacerraf B (1984) Suppressor cells and immunoregulation. Annu Rev Immunol 2:127–157

    CAS  Google Scholar 

  12. Asherson GL, Colizzi V, Zembala M (1986) An overview of T-suppressor cell circuits. Annu Rev Immunol 4:37–68

    CAS  Google Scholar 

  13. Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–755

    CAS  Google Scholar 

  14. Sakaguchi S, Takahashi T, Nishizuka Y (1982) Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med. 156:1577–1586

    CAS  Google Scholar 

  15. Powrie F, Mason D (1990) OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22 low subset. J Exp Med 172:1701–1708

    CAS  Google Scholar 

  16. McKeever U et al (1990) Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc Natl Acad Sci USA 87:7618–7622

    CAS  Google Scholar 

  17. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 155:1151–1164

    CAS  Google Scholar 

  18. Chatila TA et al (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:R75–R81

    CAS  Google Scholar 

  19. Wildin RS et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    CAS  Google Scholar 

  20. Bennett CL et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    CAS  Google Scholar 

  21. Brunkow ME et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    CAS  Google Scholar 

  22. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    CAS  Google Scholar 

  23. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    CAS  Google Scholar 

  24. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    CAS  Google Scholar 

  25. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226

    CAS  Google Scholar 

  26. Kwon HK, Chen HM, Mathis D, Benoist C (2018) FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proc Natl Acad Sci USA 115:E253–E262

    CAS  Google Scholar 

  27. Georgiev P, Charbonnier LM, Chatila TA (2019) Regulatory T cells: the many faces of Foxp3. J Clin Immunol 39:623–640

    Google Scholar 

  28. Li B et al (2007) Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 19:583–588

    CAS  Google Scholar 

  29. Ramsdell F, Ziegler SF (2014) FOXP3 and scurfy: how it all began. Nat Rev Immunol 14:343–349

    CAS  Google Scholar 

  30. Gavin MA et al (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771–775

    CAS  Google Scholar 

  31. Lin W et al (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359–368

    CAS  Google Scholar 

  32. Hill JA et al (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27:786–800

    CAS  Google Scholar 

  33. Fu W et al (2012) A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol 13:972–980

    CAS  Google Scholar 

  34. Cretney E, Kallies A, Nutt SL (2013) Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol 34:74–80

    CAS  Google Scholar 

  35. Kitagawa Y, Wing JB, Sakaguchi S (2015) Transcriptional and epigenetic control of regulatory T cell development. Prog Mol Biol Transl Sci 136:1–33

    CAS  Google Scholar 

  36. Zaiss DMW, Coffer PJ (2018) Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nat Rev Immunol 18:703–715

    CAS  Google Scholar 

  37. Zheng Y et al (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940

    CAS  Google Scholar 

  38. Marson A et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935

    CAS  Google Scholar 

  39. Samstein RM et al (2012) Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151:153–166

    CAS  Google Scholar 

  40. Kwon HK, Chen HM, Mathis D, Benoist C (2017) Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat Immunol 18:1238–1248

    CAS  Google Scholar 

  41. Fontenot JD et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    CAS  Google Scholar 

  42. Beyer M et al (2011) Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol 12:898–907

    CAS  Google Scholar 

  43. Arvey A et al (2014) Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat Immunol 15:580–587

    CAS  Google Scholar 

  44. Lopes JE et al (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177:3133–3142

    CAS  Google Scholar 

  45. Zhou X et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    CAS  Google Scholar 

  46. Sawant DV, Vignali DA (2014) Once a Treg, always a Treg? Immunol Rev 259:173–191

    CAS  Google Scholar 

  47. Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766–770

    CAS  Google Scholar 

  48. Charbonnier LM et al (2019) Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat Immunol 20:1208–1219

    CAS  Google Scholar 

  49. Campbell C, Rudensky A (2020) Roles of regulatory t cells in tissue pathophysiology and metabolism. Cell Metab 31:18–25

    CAS  Google Scholar 

  50. Zemmour D et al (2018) Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol 19:291–301

    CAS  Google Scholar 

  51. Mantel PY et al (2006) Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol 176:3593–3602

    CAS  Google Scholar 

  52. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    CAS  Google Scholar 

  53. Tseng WY et al (2019) TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. Proc Natl Acad Sci USA 116:21666–21672

    CAS  Google Scholar 

  54. Sekiya T et al (2013) Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 14:230–237

    CAS  Google Scholar 

  55. Zheng Y et al (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

    CAS  Google Scholar 

  56. Ohkura N et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37:785–799

    CAS  Google Scholar 

  57. Kitagawa Y et al (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 18:173–183

    CAS  Google Scholar 

  58. Li X, Liang Y, LeBlanc M, Benner C, Zheng Y (2014) Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158:734–748

    CAS  Google Scholar 

  59. Feng Y et al (2014) Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158:749–763

    CAS  Google Scholar 

  60. Zemmour D, Pratama A, Loughhead SM, Mathis D, Benoist C (2017) Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc Natl Acad Sci USA 114:E3472–E3480

    CAS  Google Scholar 

  61. Hsieh CS, Lee HM, Lio CW (2012) Selection of regulatory T cells in the thymus. Nat Rev Immunol 12:157–167

    CAS  Google Scholar 

  62. Jordan MS et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:283–284

    Google Scholar 

  63. Kawahata K et al (2002) Generation of CD4(+)CD25(+) regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol 168:4399–4405

    CAS  Google Scholar 

  64. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    CAS  Google Scholar 

  65. Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    CAS  Google Scholar 

  66. Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2012) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice Implications for the nonredundant function of IL-2. Immunity. 17:167–178

    Google Scholar 

  67. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    CAS  Google Scholar 

  68. Tai X et al (2013) Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38:1116–1128

    CAS  Google Scholar 

  69. Marshall D et al (2014) Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J Immunol 193:5523–5533

    Google Scholar 

  70. Łyszkiewicz M et al (2019) miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity. PLoS Biol 17:e2006716

    Google Scholar 

  71. Owen D et al (2019) Thymic regulatory T cells arise via two distinct developmental programs. Nat Immunol 20:195–205

    CAS  Google Scholar 

  72. Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763

    CAS  Google Scholar 

  73. Rosenbaum M et al (2019) Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun 10:2352

    Google Scholar 

  74. Gewies A et al (2014) Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Rep 9:1292–1305

    CAS  Google Scholar 

  75. Cheng L, Deng N, Yang N, Zhao X, Lin X (2019) Malt1 protease is critical in maintaining function of regulatory T cells and may be a therapeutic target for antitumor immunity. J Immunol 202:3008–3019

    CAS  Google Scholar 

  76. Brustle A et al (2017) MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ 24:1214–1223

    CAS  Google Scholar 

  77. Levine AG, Arvey A, Jin W, Rudensky AY (2014) Continuous requirement for the TCR in regulatory T cell function. Nat Immunol 15:1070–1078

    CAS  Google Scholar 

  78. Sekiya T et al (2018) Nr4a receptors regulate development and death of labile Treg precursors to prevent generation of pathogenic self-reactive cells. Cell Rep. 24:1627–1638

    CAS  Google Scholar 

  79. Thome M, Tschopp J (2003) TCR-induced NF-kappaB activation: a crucial role for Carma1, Bcl10 and MALT1. Trends Immunol 24:419–424

    CAS  Google Scholar 

  80. Molinero LL et al (2009) CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol 182:6736–6743

    CAS  Google Scholar 

  81. Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931

    CAS  Google Scholar 

  82. Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26:253–266

    CAS  Google Scholar 

  83. Ruan Q et al (2009) Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31:932–940

    CAS  Google Scholar 

  84. Isomura I et al (2009) c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206:3001–3014

    CAS  Google Scholar 

  85. Grinberg-Bleyer Y et al (2017) NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170:1096–1108

    CAS  Google Scholar 

  86. Visekruna A et al (2010) c-Rel is crucial for the induction of Foxp3(+) regulatory CD4(+) T cells but not T(H)17 cells. Eur J Immunol 40:671–676

    CAS  Google Scholar 

  87. Messina N et al (2016) The NF-kappaB transcription factor RelA is required for the tolerogenic function of Foxp3(+) regulatory T cells. J Autoimmun 70:52–62

    CAS  Google Scholar 

  88. Oh H et al (2017) An NF-kappaB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 47:450–465

    CAS  Google Scholar 

  89. Vasanthakumar A et al (2017) The TNF receptor superfamily-NF-kappaB axis is critical to maintain effector regulatory T cells in lymphoid and non-lymphoid tissues. Cell Rep 20:2906–2920

    CAS  Google Scholar 

  90. Ronin E et al (2019) The NF-kappaB RelA transcription factor is critical for regulatory T cell activation and stability. Front Immunol 10:2487

    CAS  Google Scholar 

  91. Deenick EK et al (2010) c-Rel but not NF-kappaB1 is important for T regulatory cell development. Eur J Immunol 40:677–681

    CAS  Google Scholar 

  92. Schuster M et al (2012) IkappaB(NS) protein mediates regulatory T cell development via induction of the Foxp3 transcription factor. Immunity 37:998–1008

    CAS  Google Scholar 

  93. Yao Z et al (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    CAS  Google Scholar 

  94. Lu LF et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91

    CAS  Google Scholar 

  95. Yang BH et al (2019) TCF1 and LEF1 control Treg competitive survival and Tfr development to prevent autoimmune diseases. Cell Rep 27:3629–3645

    CAS  Google Scholar 

  96. Kim HJ et al (2015) Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350:334–339

    CAS  Google Scholar 

  97. Mahmud SA et al (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15:473–481

    CAS  Google Scholar 

  98. Shi H et al (2018) Hippo kinases Mst1 and Mst2 sense and amplify IL-2R-STAT5 signaling in regulatory T cells to establish stable regulatory activity. Immunity 49:899–914

    CAS  Google Scholar 

  99. Janssen E et al (2017) DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs. JCI Insight 2(19):e94298

    Google Scholar 

  100. Singh AK et al (2017) DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight 2(19):e94275

    Google Scholar 

  101. Franceschini D et al (2009) PD-L1 negatively regulates CD4+ CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 119:551–564

    CAS  Google Scholar 

  102. Burchill MA et al (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    CAS  Google Scholar 

  103. Harada Y et al (2010) Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207:1381–1391

    CAS  Google Scholar 

  104. Ouyang W et al (2010) Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11:618–627

    CAS  Google Scholar 

  105. Kerdiles YM et al (2010) Foxo transcription factors control regulatory T cell development and function. Immunity 33:890–904

    CAS  Google Scholar 

  106. Ouyang W et al (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491:554–559

    CAS  Google Scholar 

  107. Luo CT, Liao W, Dadi S, Toure A, Li MO (2016) Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529:532–536

    CAS  Google Scholar 

  108. Tone Y et al (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9:194–202

    CAS  Google Scholar 

  109. Rudra D et al (2009) Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 10:1170–1177

    CAS  Google Scholar 

  110. Kitoh A et al (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31:609–620

    CAS  Google Scholar 

  111. Klunker S et al (2009) Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J Exp Med 206:2701–2715

    CAS  Google Scholar 

  112. Rudra D et al (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13:1010–1019

    CAS  Google Scholar 

  113. Xing S et al (2019) Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med 216:847–866

    CAS  Google Scholar 

  114. van Loosdregt J et al (2013) Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39:298–310

    Google Scholar 

  115. Konopacki C, Pritykin Y, Rubtsov Y, Leslie CS, Rudensky AY (2019) Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat Immunol 20:232–242

    CAS  Google Scholar 

  116. Ren J et al (2019) Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biol 17:e3000270

    CAS  Google Scholar 

  117. Drashansky TT et al (2019) Bcl11b prevents fatal autoimmunity by promoting Treg cell program and constraining innate lineages in Treg cells. Sci Adv 5:eaaw0480

    CAS  Google Scholar 

  118. Hasan SN et al (2019) Bcl11b prevents catastrophic autoimmunity by controlling multiple aspects of a regulatory T cell gene expression program. Sci Adv. 5:0706

    Google Scholar 

  119. Ono M et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689

    CAS  Google Scholar 

  120. Darce J et al (2012) An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36:731–741

    CAS  Google Scholar 

  121. Bettini ML et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–730

    CAS  Google Scholar 

  122. Liston A, Gray DH (2014) Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 14:154–165

    CAS  Google Scholar 

  123. Campbell DJ (2015) Control of regulatory T cell migration, function, and homeostasis. J Immunol 195:2507–2513

    CAS  Google Scholar 

  124. Smigiel KS, Srivastava S, Stolley JM, Campbell DJ (2014) Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev 259:40–59

    CAS  Google Scholar 

  125. Pierson W et al (2013) Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3(+) regulatory T cells. Nat Immunol 14:959–965

    CAS  Google Scholar 

  126. Yang K et al (2017) Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548:602–606

    CAS  Google Scholar 

  127. He N et al (2017) Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci USA 114:12542–12547

    CAS  Google Scholar 

  128. Shi H, Chi H (2019) Metabolic control of Treg cell stability, plasticity, and tissue-specific heterogeneity. Front Immunol 10:2716

    CAS  Google Scholar 

  129. Sullivan JM, Hollbacher B, Campbell DJ (2019) Cutting edge: dynamic expression of Id3 defines the stepwise differentiation of tissue-resident regulatory T cells. J Immunol 202:31–36

    CAS  Google Scholar 

  130. Dias S et al (2017) Effector regulatory T cell differentiation and immune homeostasis depend on the transcription factor Myb. Immunity 46:78–91

    CAS  Google Scholar 

  131. Cretney E et al (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12:304–311

    CAS  Google Scholar 

  132. Koizumi SI et al (2018) JunB regulates homeostasis and suppressive functions of effector regulatory T cells. Nat Commun 9:5344

    CAS  Google Scholar 

  133. Chapman NM et al (2018) mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat Commun 9:2095

    Google Scholar 

  134. Haljasorg U et al (2017) Irf4 expression in thymic epithelium is critical for thymic regulatory T cell homeostasis. J Immunol 198:1952–1960

    CAS  Google Scholar 

  135. Sidwell T et al (2020) Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat Commun 11:252

    CAS  Google Scholar 

  136. Gao P et al (2014) Dynamic changes in E-protein activity regulate T reg cell development. J Exp Med 211:2651–2668

    CAS  Google Scholar 

  137. Han X et al (2019) E-protein regulatory network links TCR signaling to effector Treg cell differentiation. Proc Natl Acad Sci USA 116:4471–4480

    CAS  Google Scholar 

  138. Miyazaki M et al (2014) Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease. Nat Immunol 15:767–776

    CAS  Google Scholar 

  139. Frias AB Jr et al (2019) The transcriptional regulator Id2 is critical for adipose-resident regulatory T cell differentiation, survival, and function. J Immunol 203:658–664

    CAS  Google Scholar 

  140. Maruyama T et al (2011) Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol 12:86–95

    CAS  Google Scholar 

  141. Rauch KS et al (2016) Id3 maintains Foxp3 expression in regulatory T cells by controlling a transcriptional network of E47, Spi-B, and SOCS3. Cell Rep 17:2827–2836

    CAS  Google Scholar 

  142. Koch MA et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602

    CAS  Google Scholar 

  143. Zheng Y et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356

    CAS  Google Scholar 

  144. Chaudhry A et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991

    CAS  Google Scholar 

  145. Tan TG, Mathis D, Benoist C (2016) Singular role for T-BET + CXCR3 + regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci USA 113:14103–14108

    CAS  Google Scholar 

  146. Sage PT, Sharpe AH (2016) T follicular regulatory cells. Immunol Rev 271:246–259

    CAS  Google Scholar 

  147. Johnston RJ et al (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010

    CAS  Google Scholar 

  148. Nurieva RI et al (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005

    CAS  Google Scholar 

  149. Yu D et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468

    CAS  Google Scholar 

  150. Fu W et al (2018) Deficiency in T follicular regulatory cells promotes autoimmunity. J Exp Med 215:815–825

    CAS  Google Scholar 

  151. Delacher M et al (2019) Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat Commun 10:1621

    Google Scholar 

  152. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    CAS  Google Scholar 

  153. Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35:337–348

    CAS  Google Scholar 

  154. Wohlfert EA et al (2011) GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Invest 121:4503–4515

    CAS  Google Scholar 

  155. Cipolletta D et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–553

    CAS  Google Scholar 

  156. Ivanov II et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126:1121–1133

    CAS  Google Scholar 

  157. Ohnmacht C et al (2015) MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349:989–993

    CAS  Google Scholar 

  158. Sefik E et al (2015) MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science. 349:993–997

    CAS  Google Scholar 

  159. Levine AG et al (2017) Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546:421–425

    CAS  Google Scholar 

  160. Xu L et al (2017) The kinase mTORC1 promotes the generation and suppressive function of follicular regulatory T cells. Immunity. 47:538–551

    CAS  Google Scholar 

  161. Feuerer M et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939

    CAS  Google Scholar 

  162. Burzyn D et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295

    CAS  Google Scholar 

  163. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY (2012) Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150:29–38

    CAS  Google Scholar 

  164. Scharschmidt TC et al (2015) A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011–1021

    CAS  Google Scholar 

  165. DiSpirito JR et al. (2018) Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci Immunol 3

  166. Delacher M et al (2020) Precursors for nonlymphoid-tissue treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52:295–312

    CAS  Google Scholar 

  167. Burzyn D, Benoist C, Mathis D (2013) Regulatory T cells in nonlymphoid tissues. Nat Immunol 14:1007–1013

    CAS  Google Scholar 

  168. Wu D et al (2019) Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur J Immunol 49:336–347

    CAS  Google Scholar 

  169. Li C et al (2018) TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-treg phenotype. Cell 174:285–299

    CAS  Google Scholar 

  170. Vasanthakumar A et al (2015) The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol 16:276–285

    CAS  Google Scholar 

  171. Kolodin D et al (2015) Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab 21:543–557

    CAS  Google Scholar 

  172. Murai M et al (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10:1178–1184

    CAS  Google Scholar 

  173. Rubtsov YP et al (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28:546–558

    CAS  Google Scholar 

  174. Cretney E et al (2018) Characterization of Blimp-1 function in effector regulatory T cells. J Autoimmun 91:73–82

    CAS  Google Scholar 

  175. Ogawa C et al (2018) Blimp-1 functions as a molecular switch to prevent inflammatory activity in Foxp3(+)RORgammat(+) regulatory T cells. Cell Rep 25:19–28

    CAS  Google Scholar 

  176. Garg G et al (2019) Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep 26:1854–1868

    CAS  Google Scholar 

  177. Xu M et al (2018) c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554:373–377

    CAS  Google Scholar 

  178. Wheaton JD, Yeh CH, Ciofani M (2017) Cutting Edge: c-Maf is required for regulatory T cells to adopt RORgammat(+) and follicular phenotypes. J Immunol 199:3931–3936

    CAS  Google Scholar 

  179. Neumann C et al (2019) c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis. Nat Immunol 20:471–481

    CAS  Google Scholar 

  180. Quintana FJ et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    CAS  Google Scholar 

  181. Veldhoen M et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    CAS  Google Scholar 

  182. Ye J et al (2017) The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells. Cell Rep 21:2277–2290

    CAS  Google Scholar 

  183. Tanaka A, Sakaguchi S (2019) Targeting Treg cells in cancer immunotherapy. Eur J Immunol 49:1140–1146

    CAS  Google Scholar 

  184. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    CAS  Google Scholar 

  185. Joshi NS et al (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43:579–590

    CAS  Google Scholar 

  186. Malchow S et al (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339:1219–1224

    CAS  Google Scholar 

  187. Maj T et al (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18:1332–1341

    CAS  Google Scholar 

  188. Magnuson AM et al (2018) Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc Natl Acad Sci USA 115:E10672–E10681

    CAS  Google Scholar 

  189. Plitas G et al (2016) Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45:1122–1134

    CAS  Google Scholar 

  190. Saito T et al (2016) Two FOXP3CD4 T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22:674–684

    Google Scholar 

  191. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25 + CD4 + T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    CAS  Google Scholar 

  192. Sugiyama D et al (2013) Anti-CCR4 mAb selectively depletes effector-type FoxP3 + CD4 + regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA 110:17945–17950

    CAS  Google Scholar 

  193. Ha D et al (2019) Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci USA 116:609–618

    CAS  Google Scholar 

  194. Wing K et al (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322:271–275

    CAS  Google Scholar 

  195. Romano E et al (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 112:6140–6145

    CAS  Google Scholar 

  196. Kamada T et al (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci USA 116:9999–10008

    CAS  Google Scholar 

  197. Arce Vargas F et al. (2017) Fc-Optimized Anti-CD25 depletes tumor-infiltrating regulatory t cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46:577–586

  198. Ameri AH et al (2019) IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc Natl Acad Sci USA 116:2646–2651

    CAS  Google Scholar 

  199. Pastille E et al (2019) The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunol 12:990–1003

    CAS  Google Scholar 

  200. Hatzioannou A et al (2020) An intrinsic role of IL-33 in Treg cell-mediated tumor immunoevasion. Nat Immunol 21:75–85

    CAS  Google Scholar 

  201. Li A et al (2019) IL-33 signaling alters regulatory T cell diversity in support of tumor development. Cell Rep 29:2998–3008

    CAS  Google Scholar 

  202. Wang D et al (2018) Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 23:3262–3274

    CAS  Google Scholar 

  203. Miragaia RJ et al (2019) Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50:493–504

    CAS  Google Scholar 

  204. Tomura M et al (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest 120:883–893

    CAS  Google Scholar 

  205. Hayatsu N et al (2017) Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47:268–283

    CAS  Google Scholar 

  206. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    CAS  Google Scholar 

  207. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21:1105–1111

    CAS  Google Scholar 

  208. Yamaguchi T, Wing JB, Sakaguchi S (2011) Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol 23:424–430

    CAS  Google Scholar 

  209. Wing JB, Sakaguchi S (2012) Multiple treg suppressive modules and their adaptability. Front Immunol 3:178

    CAS  Google Scholar 

  210. Arpaia N et al (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089

    CAS  Google Scholar 

  211. Kuswanto W et al (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–367

    CAS  Google Scholar 

  212. Tang Q, Bluestone JA (2013) Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med 3(11):a015552

    Google Scholar 

  213. Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC (2015) Inducing and administering Tregs to treat human disease. Front Immunol 6:654

    Google Scholar 

  214. Rosenzwajg M et al (2015) Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun 58:48–58

    CAS  Google Scholar 

  215. Hartemann A et al (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1:295–305

    CAS  Google Scholar 

  216. Hoffmann P et al (2006) Only the CD45RA + subpopulation of CD4 + CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 108:4260–4267

    CAS  Google Scholar 

  217. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE (2007) Transient expression of FOXP3 in human activated nonregulatory CD4 + T cells. Eur J Immunol 37:129–138

    CAS  Google Scholar 

  218. Miyara M et al (2009) Functional delineation and differentiation dynamics of human CD4 + T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    CAS  Google Scholar 

  219. Liu W et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med 203:1701–1711

    CAS  Google Scholar 

  220. Seddiki N et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203:1693–1700

    CAS  Google Scholar 

  221. Bin Dhuban K et al (2015) Coexpression of TIGIT and FCRL3 identifies Helios + human memory regulatory T cells. J Immunol 194:3687–3696

    CAS  Google Scholar 

  222. Fuhrman CA et al (2015) Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol 195:145–155

    CAS  Google Scholar 

  223. Trotta E et al (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24:1005–1014

    CAS  Google Scholar 

  224. Sockolosky JT et al (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359:1037–1042

    CAS  Google Scholar 

  225. Ferreira LMR, Muller YD, Bluestone JA, Tang Q (2019) Next-generation regulatory T cell therapy. Nat Rev Drug Discov 18:749–769

    CAS  Google Scholar 

  226. Akimova T et al (2017) Human lung tumor FOXP3+ Tregs upregulate four “Treg-locking” transcription factors. JCI Insight 2(16):e94075

    Google Scholar 

Download references

Acknowledgements

We thank the Fu lab members for insightful discussions. This work was funded by the US National Institute of Health (AI139753 to W.F.). We apologize to those individuals whose work could not be cited here due to space limitation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KW and WF. Writing and editing: KW and WF

Corresponding author

Correspondence to Wenxian Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Fu, W. Transcriptional regulation of Treg homeostasis and functional specification. Cell. Mol. Life Sci. 77, 4269–4287 (2020). https://doi.org/10.1007/s00018-020-03534-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03534-7

Keywords

Navigation