Skip to main content
Log in

Circulating Fibrocytes Define a New Leukocyte Subpopulation That Mediates Tissue Repair

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The host response to tissue injury requires a complex interplay of diverse cellular, humoral, and connective tissue elements. Fibroblasts participate in this process by proliferating within injured sites and contributing to scar formation and the long-term remodeling of damaged tissue. Fibroblasts present in areas of tissue injury generally have been regarded to arise by recruitment from surrounding connective tissue; however this may not be the only source of these cells.

Materials and Methods

Long-term culture of adherent, human, and murine leukocyte subpopulations was combined with a variety of immunofluorescence and functional analyses to identify a blood-borne cell type with fibroblast-like properties.

Results

We describe for the first time a population of circulating cells with fibroblast properties that specifically enter sites of tissue injury. This novel cell type, termed a “fibrocyte,” was characterized by its distinctive phenotype (collagen+/vimentin+/CD34+), by its rapid entry from blood into subcutaneously implanted wound chambers, and by its presence in connective tissue scars.

Conclusions

Blood-borne fibrocytes contribute to scar formation and may play an important role both in normal wound repair and in pathological fibrotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davidson JM. (1992) Wound repair. 2nd ed. In: Gallin JI, Goldstein IM, Snyderman R (eds). Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York, pp. 809–819.

    Google Scholar 

  2. Morgan CJ, Pledger WJ. (1992) Fibroblast proliferation. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds). Wound Healing: Biochemical and Clinical Aspects. WB Saunders, New York, pp. 63–76.

    Google Scholar 

  3. Dunphy JE. (1963) The fibroblast—A ubiquitous ally for the surgeon. N. Engl. J. Med. 268: 1367–1377.

    Article  Google Scholar 

  4. Diegelmann RF, Lindblad WJ, Cohen IK (1986) A subcutaneous implant for wound healing studies in humans. J. Surg. Res. 40: 229–237.

    Article  CAS  Google Scholar 

  5. Fahey TJ III, Shery B, Tracey KJ, van Deventer S, Jones WG II, Minei JP, Morgello S, Shires GT, Cerami A. (1990) Cytokine production in a model of wound healing: The appearance of MIP-1, MIP-2, cachectin/TNF and IL-1. Cytokine 2: 92–99.

    Article  CAS  Google Scholar 

  6. Harlow E, Lane D. (1988) Cell staining. In: Antibodies, a Laboratory Manual. Cold Spring Harbor Laboratory, New York, pp. 359–420.

    Google Scholar 

  7. Brecher G, Lawce H, Tjio JH. (1991) Bone marrow transfusions in previously irradiated, hematologically normal syngeneic mice. Proc. Soc. Exp. Biol. Med. 166: 389–393.

    Article  Google Scholar 

  8. Sinclair AH, Berta P, Palmer MS, Hawkins R, Griffiths BL, Smith MJ, Foster JW, Frischauf A, Lovell-Badge R, Goodfellow PN. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244.

    Article  CAS  Google Scholar 

  9. Alonso S, Minty A, Bourlet Y, Buckingham M. (1986) Comparison of three actin-coding sequences in the mouse: Evolutionary relationships between the actin genes of warmblooded vertebrates. J. Mol. Evol. 23: 11–22.

    Article  CAS  Google Scholar 

  10. Franke WW, Schmid E, Winter S, Osborn M, Weber K. (1979) Widespread occurrence of inter-mediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp. Cell Res. 123: 25–46.

    Article  CAS  Google Scholar 

  11. Virtanen I, Lehto VP, Lehtonen E, Vartio T, Stenman S, Kurki P, Wager O, Small JV, Dahl D, Badley RA. (1981) Expression of intermediate filaments in cultured cells. J. Cell Sci. 50: 45–63.

    CAS  PubMed  Google Scholar 

  12. Coligan JE, Kruisbeek AM, Margulies, DH, Shevach EM, Strober W. (1992) The CD system of leukocyte cell surface molecules. In: Current Protocols in Immunology. John Wiley & Sons, New York. Vol. 2, pp A.4.1–A.4.28.

    Google Scholar 

  13. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol 133: 157–165.

    CAS  PubMed  Google Scholar 

  14. Katz FE, Tindle R, Sutherland DR, Greaves MF. (1985) Identification of a membrane glycoprotein associated with hematopoietic progenitor cells. Leukemia Res. 9: 191–198.

    Article  CAS  Google Scholar 

  15. Andres RG, Singer JW, Bernstein ID. (1986) Monoclonal antibody 12-8 recognizes a 115-kD molecular present on body unipotent and multipotent hematopoietic colony forming cells and their precursors. Blood 67: 842–845.

    Google Scholar 

  16. Brown J, Greaves MF, Molgaard HV. (1991) The gene encoding the stem cell antigen, CD34, is conserved in mouse and expressed in hematopoietic progenitor cell lines, brain, and embryonic fibroblasts. Int. Immunol. 3: 175–184.

    Article  CAS  Google Scholar 

  17. Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF. (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75: 2417–2426.

    CAS  PubMed  Google Scholar 

  18. Golde DW, Hocking WG, Quan SG, Sparkes RS, Gale RP. (1980) Origin of human bone marrow fibroblasts. Brit. J. Hematol. 44: 183–187.

    Article  CAS  Google Scholar 

  19. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD, Bernstein ID. (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J. Clin. Invest. 81: 951–955.

    Article  CAS  Google Scholar 

  20. Whalen GF, Zetter BR. Angiogenesis. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds). Wound Healing: Biochemical and Clinical Aspects. WB Saunders, New York, pp. 77–95.

  21. Torry DJ, Richards CD, Podor TJ, Gauldie J. (1994) Anchorage-independent colony growth of pulmonary fibroblasts derived from fibrotic human lung tissue. J. Clin. Invest. 93: 1525–1532.

    Article  CAS  Google Scholar 

  22. Ross R. (1986) The pathogenesis of athero sclerosis. An update. N. Eng. J. Med. 314: 488–500.

    Article  CAS  Google Scholar 

  23. Steffes MW, Mauer SM. (1990) Pathophysiology of renal complications. In: Rifkin H, Porte D (eds). Diabetes Mellitus: Theory and Practice. Elsevier, New York, pp. 257–263.

    Google Scholar 

  24. Bucala R, Ritchlin C, Winchester R, Cerami A. (1991) Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J. Exp. Med. 173: 569–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Gregersen for assistance with the FACS analyses, Tom Donnelly for help with the bone marrow chimera experiments, and David Phillips for the electron microscopy studies. We are also grateful to Barbara Sherry and John Eaton for helpful discussions. These studies were supported by a grant from the Arthritis Foundation and NIH #R01 AI-29110.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucala, R., Spiegel, L.A., Chesney, J. et al. Circulating Fibrocytes Define a New Leukocyte Subpopulation That Mediates Tissue Repair. Mol Med 1, 71–81 (1994). https://doi.org/10.1007/BF03403533

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403533

Navigation