Skip to main content

Advertisement

Log in

Degradome of soluble ADAM10 and ADAM17 metalloproteases

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

MS data

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [95] partner repository with the data set identifier PXD013718.

Abbreviations

ACN:

Acetonitrile

ADAM:

A disintegrin and metalloprotease

APP:

Amyloid precursor protein

CTF:

C-terminal fragment

DAPT:

N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester

DCM:

Dilated cardiomyopathy

dnp:

2,4-Dinitrophenyl

ECM:

Extracellular matrix

FCS:

Fetal calf serum

HEK:

Human embryonic kidney

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

Mca:

7-Methyloxycoumarin-4-yl-acetyl

MMP:

Matrix metalloproteinase

PCPE-1:

Procollagen C-proteinase enhancer-1

PSM:

Peptide scoring matches

RFU:

Relative fluorescence unit

SD:

Standard deviation

TAILS:

Terminal amine isotopic labeling of substrates

TCA:

Trichloracetic acid

TFA:

Trifluoroacetic acid

TIMP:

Tissue inhibitor of metalloproteinases

TMT:

Tandem mass tag

TR:

Technical replicate

References

  1. Hartmann M, Herrlich A, Herrlich P (2013) Who decides when to cleave an ectodomain? Trends Biochem Sci 38(3):111–120

    CAS  PubMed  Google Scholar 

  2. Weber S, Saftig P (2012) Ectodomain shedding and ADAMs in development. Development 139(20):3693–3709

    CAS  PubMed  Google Scholar 

  3. Duffy MJ et al (2009) The role of ADAMs in disease pathophysiology. Clin Chim Acta 403(1–2):31–36

    CAS  PubMed  Google Scholar 

  4. Lichtenthaler SF, Lemberg MK, Fluhrer R (2018) Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 37(15):e99456

    PubMed  PubMed Central  Google Scholar 

  5. Hayashida K et al (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 293(6):925–937

    CAS  Google Scholar 

  6. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289

    CAS  PubMed  Google Scholar 

  7. Takeda S (2016) ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins (Basel) 8(5):155

    Google Scholar 

  8. Giebeler N, Zigrino P (2016) A disintegrin and metalloprotease (ADAM): historical overview of their functions. Toxins (Basel) 8(4):122

    Google Scholar 

  9. Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20(2):126–137

    CAS  PubMed  Google Scholar 

  10. Janes PW et al (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123(2):291–304

    CAS  PubMed  Google Scholar 

  11. Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20(2):164–174

    CAS  PubMed  Google Scholar 

  12. Zunke F, Rose-John S (2017) The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta 1864(11 Pt B):2059–2070

    CAS  Google Scholar 

  13. Matthews AL et al (2017) Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets 28(4):333–341

    CAS  PubMed  Google Scholar 

  14. Saftig P, Reiss K (2011) The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90(6–7):527–535

    CAS  PubMed  Google Scholar 

  15. Wetzel S, Seipold L, Saftig P (2017) The metalloproteinase ADAM10: a useful therapeutic target? Biochim Biophys Acta 1864(11 Pt B):2071–2081

    CAS  Google Scholar 

  16. Scheller J et al (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32(8):380–387

    CAS  PubMed  Google Scholar 

  17. Peschon JJ et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282(5392):1281–1284

    CAS  PubMed  Google Scholar 

  18. Hartmann D et al (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624

    CAS  PubMed  Google Scholar 

  19. Chalaris A et al (2010) Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med 207(8):1617–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang C et al (2010) Adam10 is essential for early embryonic cardiovascular development. Dev Dyn 239(10):2594–2602

    CAS  PubMed  Google Scholar 

  21. Shi W et al (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261(2):371–380

    CAS  PubMed  Google Scholar 

  22. Jackson LF et al (2003) Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J 22(11):2704–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Satoh M et al (2000) Expression of tumor necrosis factor-alpha-converting enzyme and tumor necrosis factor-alpha in human myocarditis. J Am Coll Cardiol 36(4):1288–1294

    CAS  PubMed  Google Scholar 

  24. Fedak PW et al (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113(2):238–245

    CAS  PubMed  Google Scholar 

  25. Arndt M et al (2002) Altered expression of ADAMs (A Disintegrin And Metalloproteinase) in fibrillating human atria. Circulation 105(6):720–725

    CAS  PubMed  Google Scholar 

  26. Fan D et al (2015) Cardiomyocyte A disintegrin and metalloproteinase 17 (ADAM17) is essential in post-myocardial infarction repair by regulating angiogenesis. Circ Heart Fail 8(5):970–979

    CAS  PubMed  Google Scholar 

  27. Akatsu T et al (2003) Increased mRNA expression of tumour necrosis factor-alpha and its converting enzyme in circulating leucocytes of patients with acute myocardial infarction. Clin Sci (Lond) 105(1):39–44

    CAS  Google Scholar 

  28. Tousseyn T et al (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 284(17):11738–11747

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Groth E et al (2016) Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochim Biophys Acta 1863(11):2795–2808

    CAS  PubMed  Google Scholar 

  30. Sun Q et al (2014) Increased plasma TACE activity in subjects with mild cognitive impairment and patients with Alzheimer’s disease. J Alzheimers Dis 41(3):877–886

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertram A et al (2015) Circulating ADAM17 level reflects disease activity in proteinase-3 ANCA-associated vasculitis. J Am Soc Nephrol 26(11):2860–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kleifeld O et al (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28(3):281–288

    CAS  PubMed  Google Scholar 

  33. Conrad C et al (2018) ADAM8 expression in breast cancer derived brain metastases: functional implications on MMP-9 expression and transendothelial migration in breast cancer cells. Int J Cancer 142(4):779–791

    CAS  PubMed  Google Scholar 

  34. Hundhausen C et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102(4):1186–1195

    CAS  PubMed  Google Scholar 

  35. Schlomann U et al (2015) ADAM8 as a drug target in pancreatic cancer. Nat Commun 6:6175

    PubMed  PubMed Central  Google Scholar 

  36. Jiang J et al (2011) Ectodomain shedding and autocleavage of the cardiac membrane protease corin. J Biol Chem 286(12):10066–10072

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Prudova A et al (2016) TAILS N-terminomics and proteomics show protein degradation dominates over proteolytic processing by cathepsins in pancreatic tumors. Cell Rep 16(6):1762–1773

    CAS  PubMed  Google Scholar 

  38. Tucher J et al (2014) LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J Proteome Res 13(4):2205–2214

    CAS  PubMed  Google Scholar 

  39. Caescu CI, Jeschke GR, Turk BE (2009) Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem J 424(1):79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Seegar TCM et al (2017) Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell 171(7):1638–1648 e7

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li L, Zhao Q, Kong W (2018) Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 68:490–506

    PubMed  Google Scholar 

  42. Frolova EG et al (2012) Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. Faseb J 26(6):2363–2373

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Radice GL et al (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1):64–78

    CAS  PubMed  Google Scholar 

  44. Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420

    CAS  PubMed  Google Scholar 

  45. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638

    CAS  PubMed  Google Scholar 

  46. Hohensinner PJ et al (2007) Macrophage colony stimulating factor expression in human cardiac cells is upregulated by tumor necrosis factor-alpha via an NF-kappaB dependent mechanism. J Thromb Haemost 5(12):2520–2528

    CAS  PubMed  Google Scholar 

  47. Reiss K et al (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24(4):742–752

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lammich S et al (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96(7):3922–3927

    CAS  PubMed  Google Scholar 

  49. Kuhn PH et al (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29(17):3020–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jorissen E et al (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30(14):4833–4844

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hedrich J et al (2010) Fetuin-A and Cystatin C are endogenous inhibitors of human meprin metalloproteases. Biochemistry 49(39):8599–8607

    CAS  PubMed  Google Scholar 

  52. Buxbaum JD et al (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273(43):27765–27767

    CAS  PubMed  Google Scholar 

  53. Allinson TM et al (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74(3):342–352

    CAS  PubMed  Google Scholar 

  54. Herzog C et al (2014) ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A. J Biol Chem 289(19):13308–13322

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hahn D et al (2003) Phorbol 12-myristate 13-acetate-induced ectodomain shedding and phosphorylation of the human meprinbeta metalloprotease. J Biol Chem 278(44):42829–42839

    CAS  PubMed  Google Scholar 

  56. Jefferson T et al (2013) The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin beta and ADAM10. Cell Mol Life Sci 70(2):309–333

    CAS  PubMed  Google Scholar 

  57. Wichert R et al (2017) Mucus detachment by host metalloprotease meprin beta requires shedding of its inactive pro-form, which is abrogated by the pathogenic protease RgpB. Cell Rep 21(8):2090–2103

    CAS  PubMed  Google Scholar 

  58. Szklarczyk D et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    CAS  Google Scholar 

  59. Scharfenberg F et al (2019) Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03179-1

    Article  PubMed  Google Scholar 

  60. Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20

    CAS  PubMed  Google Scholar 

  61. Doedens JR, Black RA (2000) Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275(19):14598–14607

    CAS  PubMed  Google Scholar 

  62. Marcello E et al (2013) Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J Clin Invest 123(6):2523–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stoeck A et al (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393(Pt 3):609–618

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Moss ML et al (2011) ADAM9 inhibition increases membrane activity of ADAM10 and controls alpha-secretase processing of amyloid precursor protein. J Biol Chem 286(47):40443–40451

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang H et al (2011) Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer’s disease. Mol Neurodegener 6:69

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Conrad C et al (2017) Profiling of metalloprotease activities in cerebrospinal fluids of patients with neoplastic meningitis. Fluids Barriers CNS 14(1):22

    PubMed  PubMed Central  Google Scholar 

  67. Bostanci N et al (2008) Tumor necrosis factor-alpha-converting enzyme (TACE) levels in periodontal diseases. J Dent Res 87(3):273–277

    CAS  PubMed  Google Scholar 

  68. Li X et al (2008) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med 14(8):863–868

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Maskos K et al (1998) Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci USA 95(7):3408–3412

    CAS  PubMed  Google Scholar 

  70. Arpino V, Brock M, Gill SE (2015) The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 44–46:247–254

    PubMed  Google Scholar 

  71. Amour A et al (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473(3):275–279

    CAS  PubMed  Google Scholar 

  72. Amour A et al (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435(1):39–44

    CAS  PubMed  Google Scholar 

  73. Jagdeo JM et al (2018) N-Terminomics TAILS identifies host cell substrates of poliovirus and coxsackievirus B3 3C proteinases that modulate virus infection. J Virol 92(8):e02211-17

    PubMed  PubMed Central  Google Scholar 

  74. Schlage P et al (2014) Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics 13(2):580–593

    CAS  PubMed  Google Scholar 

  75. Jefferson T et al (2011) Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 286(31):27741–27750

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Arnold P et al (2017) Meprin metalloproteases generate biologically active soluble interleukin-6 receptor to induce trans-signaling. Sci Rep 7:44053

    PubMed  PubMed Central  Google Scholar 

  77. Schutte A et al (2014) Microbial-induced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc Natl Acad Sci USA 111(34):12396–12401

    CAS  PubMed  Google Scholar 

  78. Cavadas M et al (2017) Phosphorylation of iRhom2 controls stimulated proteolytic shedding by the metalloprotease ADAM17/TACE. Cell Rep 21(3):745–757

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Oikonomidi I et al (2018) iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. Elife 7:e35032

    PubMed  PubMed Central  Google Scholar 

  80. Riethmueller S et al (2016) Cleavage site localization differentially controls interleukin-6 receptor proteolysis by ADAM10 and ADAM17. Sci Rep 6:25550

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Becker C et al (2003) Differences in the activation mechanism between the alpha and beta subunits of human meprin. Biol Chem 384(5):825–831

    CAS  PubMed  Google Scholar 

  82. Peters F et al (2019) Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes. FASEB J 33(6):7490–7504

    CAS  PubMed  Google Scholar 

  83. Becker-Pauly C et al (2007) The α and β subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation. J Invest Dermatol 127(5):1115–1125

    CAS  PubMed  Google Scholar 

  84. Prudova A et al (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 9(5):894–911

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Blanc G et al (2007) Insights into how CUB domains can exert specific functions while sharing a common fold: conserved and specific features of the CUB1 domain contribute to the molecular basis of procollagen C-proteinase enhancer-1 activity. J Biol Chem 282(23):16924–16933

    CAS  PubMed  Google Scholar 

  86. Schlomann U et al (2002) The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 277(50):48210–48219

    CAS  PubMed  Google Scholar 

  87. Richter L et al (2010) Amyloid beta 42 peptide (Abeta42)-lowering compounds directly bind to Abeta and interfere with amyloid precursor protein (APP) transmembrane dimerization. Proc Natl Acad Sci USA 107(33):14597–14602

    CAS  PubMed  Google Scholar 

  88. Colombo A et al (2013) Constitutive alpha- and beta-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines. Neurobiol Dis 49:137–147

    CAS  PubMed  Google Scholar 

  89. Soriano S et al (2001) The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem 276(31):29045–29050

    CAS  PubMed  Google Scholar 

  90. Waterhouse A et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bekhouche M et al (2010) Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity. J Biol Chem 285(21):15950–15959

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang G et al (2009) Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J Biol Chem 284(38):25879–25888

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Colaert N et al (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6(11):786–787

    CAS  PubMed  Google Scholar 

  95. Perez-Riverol Y et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank William C. Claycomb (Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana) for providing HL-1 cells. We thank Björn Rabe from the Biochemical Institute of the University of Kiel for ADAM10−/−; 17−/− HEK293T cells.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) SFB 877 (Proteolysis as a Regulatory Event in Pathophysiology, Projects A1, A9, A15 and Z2), BE 4086/2-2 (C.B.-P.), University of Lyon (C.M.), FOR2290 (S.F.L.), PI379/5-2 (C.U.P.), and BA1606/3-1 (J.W.B).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FS and CB-P; methodology, investigation, and data analysis, FS, AH, MS, JB, US, FP, RW, MB, DS-A, SR-J, CM, SFL, CUP, JWB, AT, and CB-P; writing, FS and CB-P.

Corresponding authors

Correspondence to Franka Scharfenberg or Christoph Becker-Pauly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharfenberg, F., Helbig, A., Sammel, M. et al. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell. Mol. Life Sci. 77, 331–350 (2020). https://doi.org/10.1007/s00018-019-03184-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03184-4

Keywords

Navigation