Skip to main content
Log in

The gating of the CFTR channel

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  2. Sheppard DN, Gray MA, Gong X et al (2004) The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Cl- channel. J Cyst Fibros 3(Suppl 2):101–108

    Article  CAS  PubMed  Google Scholar 

  3. Munkonge F, Alton EW, Andersson C et al (2004) Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators. J Cyst Fibros 3(Suppl 2):171–176

    Article  CAS  PubMed  Google Scholar 

  4. Moran O, Zegarra-Moran O (2008) On the measurement of the functional properties of the CFTR. J Cyst Fibros 7:483–494

    Article  CAS  PubMed  Google Scholar 

  5. Cai Z, Sohma Y, Bompadre SG et al (2011) Application of high-resolution single-channel recording to functional studies of cystic fibrosis mutants. Methods Mol Biol 741:419–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamill O, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflüg Arch 391:85–100

    Article  CAS  Google Scholar 

  7. Cheng SH, Rich DP, Marshall J et al (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Article  CAS  PubMed  Google Scholar 

  8. Gadsby DC, Nairn AC (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 79:S77–S107

    CAS  PubMed  Google Scholar 

  9. Chappe V, Hinkson DA, Zhu T et al (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J Physiol Lond 548:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seavilleklein G, Amer N, Evagelidis A et al (2008) PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR. Am J Physiol Cell Physiol 295:C1366–C1375

    Article  CAS  PubMed  Google Scholar 

  11. Aleksandrov L, Mengos A, Chang X et al (2001) Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 276:12918–12923

    Article  CAS  PubMed  Google Scholar 

  12. Cai Z, Scott-Ward TS, Sheppard DN (2003) Voltage-dependent gating of the cystic fibrosis transmembrane conductance regulator Cl-channel. J Gen Physiol 122:605–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi JY, Joo NS, Krouse ME et al (2007) Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. J Clin Investig 117:3118–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moran O (2014) On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 52C:7–14

    Article  Google Scholar 

  16. Rich DP, Gregory RJ, Anderson MP et al (1991) Effect of deleting the R domain on CFTR-generated chloride channels. Science 253:205–207

    Article  CAS  PubMed  Google Scholar 

  17. Rich DP, Berger HA, Cheng SH et al (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl-channel by negative charge in the R domain. J Biol Chem 268:20259–20267

    CAS  PubMed  Google Scholar 

  18. Ma J, Zhao J, Drumm ML et al (1997) Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 272:28133–28141

    Article  CAS  PubMed  Google Scholar 

  19. Chang XB, Tabcharani JA, Hou YX et al (1993) Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J Biol Chem 268:11304–11311

    CAS  PubMed  Google Scholar 

  20. Bompadre SG, Ai T, Cho JH et al (2005) CFTR gating I: characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR). J Gen Physiol 125:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neville DC, Rozanas CR, Price EM et al (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6:2436–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Townsend RR, Lipniunas PH, Tulk BM, Verkman AS (1996) Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Protein Sci 5:1865–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baker JMR, Hudson RP, Kanelis V et al (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winter MC, Welsh MJ (1997) Stimulation of CFTR activity by its phosphorylated R domain. Nature 389:294–296

    Article  CAS  PubMed  Google Scholar 

  25. Chan KW, Csanády L, Seto-Young D et al (2000) Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator’s NH(2)-terminal nucleotide binding domain. J Gen Physiol 116:163–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Csanády L, Chan KW, Nairn AC, Gadsby DC (2005) Functional roles of nonconserved structural segments in CFTR’s NH2-terminal nucleotide binding domain. J Gen Physiol 125:43–55

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson DJ, Strong TV, Mansoura MK et al (1997) CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am J Physiol 273:L127–L133

    CAS  PubMed  Google Scholar 

  28. Vais H, Zhang R, Reenstra WW (2004) Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation. Am J Physiol Cell Physiol 287:C737–C745

    Article  CAS  PubMed  Google Scholar 

  29. Dulhanty AM, Riordan JR (1994) Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry 33:4072–4079

    Article  CAS  PubMed  Google Scholar 

  30. Marasini C, Galeno L, Moran O (2012) Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR. Biochem Biophys Res Commun 423:549–552

    Article  CAS  PubMed  Google Scholar 

  31. Marasini C, Galeno L, Moran O (2013) A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 70:923–933

    Article  CAS  PubMed  Google Scholar 

  32. Kanelis V, Hudson RP, Thibodeau PH et al (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J 29:263–277

    Article  CAS  PubMed  Google Scholar 

  33. Xie J, Adams LM, Zhao J et al (2002) A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. J Biol Chem 277:23019–23027

    Article  CAS  PubMed  Google Scholar 

  34. Hwang TC, Nagel G, Nairn AC, Gadsby DC (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci USA 91:4698–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vergani P, Nairn AC, Gadsby DC (2003) On the mechanism of MgATP-dependent gating of CFTR Cl- channels. J Gen Physiol 121:17–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vergani P, Lockless SW, Nairn AC, Gadsby DC (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433:876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muallem D, Vergani P (2009) Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Philos Trans R Soc Lond B Biol Sci 364:247–255

    Article  CAS  PubMed  Google Scholar 

  38. Csanády L, Vergani P, Gadsby DC (2010) Strict coupling between CFTR’s catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc Natl Acad Sci USA 107:1241–1246

    Article  PubMed  Google Scholar 

  39. Zeltwanger S, Wang F, Wang GT, Gillis KD, Hwang TC (1999) Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J Gen Physiol 113:541–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weinreich F, Riordan JR, Nagel G (1999) Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. J Gen Physiol 114:55–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dassa E, Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229

    Article  CAS  PubMed  Google Scholar 

  42. Mendoza JL, Thomas PJ (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J Bioenerg Biomembr 39:499–505

    Article  CAS  PubMed  Google Scholar 

  43. Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–245

    Article  CAS  PubMed  Google Scholar 

  44. Galeno L, Galfrè E, Moran O (2011) Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution. Eur Biophys J 40:811–824

    Article  CAS  PubMed  Google Scholar 

  45. Galfrè E, Galeno L, Moran O (2012) A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 69:3701–3713

    Article  PubMed  Google Scholar 

  46. Mense M, Vergani P, White DM et al (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25:4728–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewis HA, Buchanan SG, Burley SK et al (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  48. Lewis HA, Wang C, Zhao X et al (2010) Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J Mol Biol 396:406–430

    Article  CAS  PubMed  Google Scholar 

  49. Atwell S, Brouillette CG, Conners K et al (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng Des Sel 23:375–384

    Article  CAS  PubMed  Google Scholar 

  50. Berger AL, Ikuma M, Welsh MJ (2004) Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc Natl Acad Sci USA 27:27

    Google Scholar 

  51. Aleksandrov L, Aleksandrov A, Chang X, Riordan J (2002) The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J Biol Chem 277:15419–15425

    Article  CAS  PubMed  Google Scholar 

  52. Vergani P, Basso C, Mense M et al (2005) Control of the CFTR channel’s gates. Biochem Soc Trans 33:1003–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Basso C, Vergani P, Nairn AC, Gadsby DC (2003) Prolonged nonhydrolytic interaction of nucleotide with CFTR’s NH2-terminal nucleotide binding domain and its role in channel gating. J Gen Physiol 122:333–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Horovitz A (1996) Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des 1:R121–R126

    Article  CAS  PubMed  Google Scholar 

  55. Szollosi A, Muallem DR, Csanády L, Vergani P (2011) Mutant cycles at CFTR’s non-canonical ATP-binding site support little interface separation during gating. J Gen Physiol 137:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aleksandrov AA, Riordan JR (1998) Regulation of CFTR ion channel gating by MgATP. FEBS Lett 431:97–101

    Article  CAS  PubMed  Google Scholar 

  57. Mathews CJ, Tabcharani JA, Hanrahan JW (1998) The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. J Membr Biol 163:55–66

    Article  CAS  PubMed  Google Scholar 

  58. Csanády L, Nairn AC, Gadsby DC (2006) Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. J Gen Physiol 128:523–533

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mornon JP, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  CAS  PubMed  Google Scholar 

  60. Mornon J-P, Hoffmann B, Jonic S et al (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403

    Article  CAS  PubMed  Google Scholar 

  61. Serohijos AW, Hegedus T, Aleksandrov AA et al (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. PNAS 105:3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Belmonte L, Moran O (2015) On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: a molecular dynamic study. Biochimie 111:19–29

    Article  CAS  PubMed  Google Scholar 

  63. Billet A, Mornon J-P, Jollivet M et al (2013) CFTR: effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 12:737–745

    Article  CAS  PubMed  Google Scholar 

  64. Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ (1996) Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:21279–21284

    Article  CAS  PubMed  Google Scholar 

  65. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  CAS  PubMed  Google Scholar 

  66. O’Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373:1891–1904. doi:10.1016/S0140-6736(09)60327-5

    Article  PubMed  Google Scholar 

  67. Bobadilla JL, Macek MJ, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat 19:575–606

    Article  CAS  PubMed  Google Scholar 

  68. Logan J, Hiestand D, Daram P et al (1994) Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 94:228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li C, Ramjeesingh M, Wang W et al (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:28463–28468

    Article  CAS  PubMed  Google Scholar 

  70. Bompadre SG, Sohma Y, Li M, Hwang T-C (2007) G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J Gen Physiol 129:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cai Z, Taddei A, Sheppard DN (2006) Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. J Biol Chem 281:1970–1977. doi:10.1074/jbc.M510576200

    Article  CAS  PubMed  Google Scholar 

  72. Dalemans W, Barbry P, Champigny G et al (1991) Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature 354:526–528

    Article  CAS  PubMed  Google Scholar 

  73. Cai Z, Palmai-Pallag T, Khuituan P et al (2015) Impact of the F508del mutation on ovine CFTR, a Cl-channel with enhanced conductance and ATP-dependent gating. J Physiol Lond 593:2427–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jih K-Y, Li M, Hwang T-C, Bompadre SG (2011) The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. J Physiol 589:2719–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pollock NL, Satriano L, Zegarra-Moran O et al (2016) Structure of wild type and mutant F508del CFTR: a small-angle X-ray scattering study of the protein-detergent complexes. J Struct Biol 194:102–111. doi:10.1016/j.jsb.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  76. Accurso FJ, Rowe SM, Clancy JP et al (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 363:1991–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to prof. Paolo Tammaro for critically reading the manuscript. This work was partially supported by the Italian Cystic Fibrosis Foundation (FCC#4/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Moran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, O. The gating of the CFTR channel. Cell. Mol. Life Sci. 74, 85–92 (2017). https://doi.org/10.1007/s00018-016-2390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2390-z

Keywords

Navigation