Skip to main content

Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 925))

Abstract

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardi A (2015) Structure and gating of CLC channels and exchangers. J Physiol 593:4129–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal P, Sansom MSP, Tucker SJ (2015) Hydrophobic gating in ion channels. J Mol Biol 427:121–130

    Article  CAS  PubMed  Google Scholar 

  • Baconguis I, Hattori M, Gouaux E (2013) Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels. Curr Opin Struct Biol 23:277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnéris C, Naylor CE, McCusker EC, Wallace BA (2015) Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J Gen Physiol 145:5–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, Li M, Hwang T-C (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:293–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Li M, Hwang T-C (2011) Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J Gen Physiol 138:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck EJ, Yang Y, Yaemsiri S, Raghuram V (2008) Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 283:4957–4966

    Article  CAS  PubMed  Google Scholar 

  • Billet A, Mornon J-P, Jollivet M, Lehn P, Callebaut I, Becq F (2013) CFTR: effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 12:737–745

    Article  CAS  PubMed  Google Scholar 

  • Bosch B, De Boeck K (2016) Searching for a cure for cystic fibrosis. A 25-year quest in a nutshell. Eur J Pediatr 175:1–8

    Article  PubMed  Google Scholar 

  • Broadbent SD, Wang W, Linsdell P (2014) Interaction between two extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochem Cell Biol 92:390–396

    Article  CAS  PubMed  Google Scholar 

  • Broadbent SD, Ramjeesingh M, Bear CE, Argent BE, Linsdell P, Gray MA (2015) The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Pflugers Arch 467:1783–1794

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Zheng N (2015) Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 40:526–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T-Y, Hwang T-C (2008) CLC-0 and CFTR: chloride channels evolved from transporters. Physiol Rev 88:351–387

    Article  CAS  PubMed  Google Scholar 

  • Chong PA, Kota P, Dokholyan NV, Forman-Kay JD (2013) Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 3:a009522

    PubMed  PubMed Central  Google Scholar 

  • Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW, Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci U S A 111:9145–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collawn JF, Matalon S (2014) CFTR and lung homeostasis. Am J Physiol 307:L917–L923

    CAS  Google Scholar 

  • Corradi V, Vergani P, Tieleman DP (2015) Cystic fibrosis transmembrane conductance regulator (CFTR). Closed and open state channel models. J Biol Chem 290:22891–22906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ (1996) Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:21279–21284

    Article  CAS  PubMed  Google Scholar 

  • Csanády L, Vergani P, Gadsby DC (2010) Strict coupling between CFTR’s catalytic cycle and gating of its Cl ion pore revealed by distributions of open channel burst durations. Proc Natl Acad Sci U S A 107:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA (2014) Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. J Gen Physiol 144:159–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton J, Kalid O, Schushan M, Ben-Tal N, Villà-Freixa J (2012) New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 52:1842–1853

    Article  CAS  PubMed  Google Scholar 

  • Dawson RPJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Rzhetsky A, Alikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • DeFelice LJ, Goswami T (2007) Transporters as channels. Annu Rev Physiol 69:87–112

    Article  CAS  PubMed  Google Scholar 

  • Eckford PDW, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36639–36649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hiani Y, Linsdell P (2010) Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 285:32126–32140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2012a) Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry 51:3971–3981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2012b) Tuning of CFTR chloride channel function by location of positive charges within the pore. Biophys J 103:1719–1726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2014a) Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis. Biochem Cell Biol 92:481–488

    Article  PubMed  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2014b) Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 289:28149–28159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2015) Functional architecture of the cytoplasmic entrance to the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 290:15855–15865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hiani Y, Negoda A, Linsdell P (2016) Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cell Mol Life Sci 73:1917–1925

    Article  PubMed  CAS  Google Scholar 

  • Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188

    Article  CAS  PubMed  Google Scholar 

  • Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2:a009563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadsby DC, Vergani P, Csanády L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Hwang T-C (2015) Localizing a gate in CFTR. Proc Natl Acad Sci U S A 112:2461–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Bai Y, Hwang T-C (2013) Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104:786–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Linsdell P (2003) Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. J Gen Physiol 122:673–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Burbridge SM, Cowley EA, Linsdell P (2002) Molecular determinants of Au(CN)2 binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl channel pore. J Physiol 540:39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunderson KL, Kopito RR (1995) Conformational states of CFTR associated with channel gating: the role of ATP binding and hydrolysis. Cell 82:231–239

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hohl M, Briand C, Grütter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402

    Article  CAS  PubMed  Google Scholar 

  • Hunt JF, Wang C, Ford RC (2013) Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 3:a009514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang T-C, Kirk KL (2013) The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3:a009498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikpa PT, Bijvelds MJ, de Jonge HR (2014) Cystic fibrosis: towards personalized therapies. Int J Biochem Cell Biol 52:192–200

    Article  CAS  PubMed  Google Scholar 

  • Ishihara H, Welsh MJ (1997) Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis. Am J Physiol 273:C1278–C1289

    CAS  PubMed  Google Scholar 

  • Jih K-Y, Hwang T-C (2012) Nonequilibrium gating of CFTR on an equilibrium theme. Physiology 27:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jih K-Y, Hwang T-C (2013) Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci U S A 110:4404–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan IK, Kota KC, Cui G, Thompson CH, McCarty NA (2008) Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Proc Natl Acad Sci U S A 105:18865–18870

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS, Cheng Y (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517:396–400

    Article  CAS  PubMed  Google Scholar 

  • Kirk KL, Wang W (2011) A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J Biol Chem 286:12813–12819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC (2014) Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343:1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M-S, Cowley EA, Linsdell P (2012) Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br J Pharmacol 167:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Shaikh SA, Enkavi G, Wen P-C, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci U S A 110:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsdell P (2014a) Functional architecture of the CFTR chloride channel. Mol Membr Biol 31:1–16

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P (2014b) State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflugers Arch 466:2243–2255

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P (2014c) Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem 5:26–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Linsdell P (2015) Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Biochim Biophys Acta 1848:1573–1590

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P (2016) Anion conductance selectivity mechanism of the CFTR chloride channel. Biochim Biophys Acta 1858:740–747

    Article  CAS  PubMed  Google Scholar 

  • Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubamba B, Dhooghe B, Noel S, Leal T (2012) Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45:1132–1144

    Article  CAS  PubMed  Google Scholar 

  • Miller C (2010) CFTR: break a pump, make a channel. Proc Natl Acad Sci U S A 107:959–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mornon J-P, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  CAS  PubMed  Google Scholar 

  • Mornon J-P, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66:3469–3486

    Article  CAS  PubMed  Google Scholar 

  • Mornon J-P, Hoffmann B, Jonic S, Lehn P, Callebaut I (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Steinbach JH (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol 277:153–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, Sansom MS (2012) Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a “bottleneck” in the pore. Biochemistry 51:2199–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M, Lindahl E, Fedosova N, Nissen P (2013) Crystal structure of Na+, K+-ATPase in the Na+-bound state. Science 342:123–127

    Article  CAS  PubMed  Google Scholar 

  • Oiki S (2015) Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. J Physiol 593:2553–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okeyo G, Wang W, Wei S, Kirk KL (2014) Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. J Biol Chem 288:17122–17133

    Article  CAS  Google Scholar 

  • O’Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373:1891–1904

    Article  PubMed  Google Scholar 

  • Qian F, El Hiani Y, Linsdell P (2011) Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflugers Arch 462:559–571

    Article  CAS  PubMed  Google Scholar 

  • Quistgaard EM, Löw C, Guettou F, Norlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132

    Article  CAS  PubMed  Google Scholar 

  • Rahman KS, Cui G, Harvey SC, McCarty NA (2013) Modeling the conformational changes underlying channel opening in CFTR. PLoS ONE 8:e74574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reithmeier RAF, Moraes TF (2015) Solute transporters keep on rockin. Nat Struct Mol Biol 22:752–754

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, Ford RC (2011) The cystic fibrosis transmembrane conductance regulator (CFTR). Three-dimensional structure and localization of a channel gate. J Biol Chem 286:42647–42654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubaiy HN, Linsdell P (2015) Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol Sci 65:233–241

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Vandenberg RJ (2016) Elevating the alternating-access model. Nat Struct Mol Biol 23:187–189

    Article  CAS  PubMed  Google Scholar 

  • Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR (1996a) Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem 271:15139–15145

    Article  CAS  PubMed  Google Scholar 

  • Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR, Clarke DM (1996b) Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J Biol Chem 271:27493–27499

    Article  CAS  PubMed  Google Scholar 

  • Serohijos AWR, Hegedüs T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D crystal structure crucial to assembly and channel function. Proc Natl Acad Sci U S A 105:3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42:51–72

    Article  PubMed  CAS  Google Scholar 

  • Smith SS, Steinle ED, Meyerhoff ME, Dawson DC (1999) Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J Gen Physiol 114:799–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobolevsky AI (2015) Structure and gating of tetrameric glutamate receptors. J Physiol 593:29–38

    Article  CAS  PubMed  Google Scholar 

  • Sorum B, Czégé D, Csanády L (2015) Timing of CFTR pore opening and structure of its transition state. Cell 163:724–733

    Article  CAS  PubMed  Google Scholar 

  • ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 23:507–514

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (2013) Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys 4:283–322

    Article  CAS  Google Scholar 

  • Vilin YY, Nunez J-J, Kim RY, Dake GR, Kurata HT (2013) Paradoxical activation of an inwardly rectifying potassium channel mutant by spermine: “(B)locking” open the bundle crossing gate. Mol Pharmacol 84:572–581

    Article  CAS  PubMed  Google Scholar 

  • Wainwright CE (2014) Ivacaftor for patients with cystic fibrosis. Expert Rev Respir Med 8:533–538

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Linsdell P (2012a) Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Biochim Biophys Acta 1818:851–860

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Linsdell P (2012b) Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 287:10156–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Linsdell P (2012c) Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 287:32136–32146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wu J, Bernard K, Li G, Wang G, Bevensee MO, Kirk KL (2010) ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Proc Natl Acad Sci U S A 107:3888–3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, El Hiani Y, Linsdell P (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol 138:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, El Hiani Y, Rubaiy HN, Linsdell P (2014a) Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 466:477–490

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Roessler BC, Kirk KL (2014b) An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. J Biol Chem 289:30364–30378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN (2014c) Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 52:47–57

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL, Kirk KL (2014) Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. J Biol Chem 289:19942–19957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL (2016) Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 30:1247–1262

    Article  CAS  PubMed  Google Scholar 

  • Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283

    Article  CAS  PubMed  Google Scholar 

  • Yeh H-I, Yeh J-T, Hwang T-C (2015) Modulation of CFTR gating by permeant ions. J Gen Physiol 145:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hwang T-C (2015) The fifth transmembrane segment of cystic fibrosis transmembrane conductance regulator contributes to its anion permeation pathway. Biochemistry 54:3839–3850

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-R, Song B, McCarty NA (2005) State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 280:41997–42003

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-X, McCammon JA (2010) The gates of ion channels and enzymes. Trends Biochem Sci 35:179–185

    Article  CAS  PubMed  Google Scholar 

  • Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory concerning conformational changes in the CFTR anion channel is funded by the Canadian Institutes of Health Research and Cystic Fibrosis Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Linsdell, P. (2016). Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 925. Springer, Singapore. https://doi.org/10.1007/5584_2016_33

Download citation

Publish with us

Policies and ethics