Skip to main content

Advertisement

Log in

Effects of addictive drugs on adult neural stem/progenitor cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine

AEA:

Anandamide

AR:

Adrenergic receptor

BDNF:

Brain-derived neurotrophic factor

BLBP:

Brain lipid-binding protein

bHLH:

Basic helix–loop–helix

BrdU:

Bromodeoxyuridine

Cdk:

Cyclin-dependent kinase

CPP:

Conditioned place preference

DADLE:

[d-Ala2, d-Leu5]-Enkephalin

DCX:

Doublecortin

DG:

Dentate gyrus

DHT:

Dihydrotestosterone

ERK:

Extracellular signal-regulated kinase

GFAP:

Glial fibrillary acidic protein

GPCR:

G protein-coupled receptor

JNK:

c-Jun N-terminal kinase

MAP:

Microtubule-associated protein

MAPK:

Mitogen-activated protein kinase

MDMA:

3,4-Methylenedioxy-methamphetamine

METH:

Methamphetamine

MPH:

Methylphenidate

nAChR:

Nicotinic acetylcholine receptor

NeuroD1:

Neurogenic differentiation 1

Ngn2:

Neurogenin 2

NSPC:

Neural stem/progenitor cell

OPRD1:

δ-Opioid receptor

OPRM1:

μ-Opioid receptor

Pax6:

Paired-box 6

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphoinositide 3-kinase

pHisH3:

Phosphorylated histone H3

Prox1:

Prospero homeobox 1

PSA-NCAM:

Polysialylated-neural cell adhesion molecule

SGZ:

Subgranular zone

SVZ:

Subventricular zone

Tbr:

T-box brain

TRBP:

TAR RNA-binding protein

Tuj1:

βIII-tubulin

VEGF:

Vascular endothelial growth factor

YY1:

Yin Yang 1

References

  1. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  2. Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Yoneyama M, Shiba T, Hasebe S, Ogita K (2011) Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration. J Pharmacol Sci 115:425–432

    Article  PubMed  CAS  Google Scholar 

  4. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    Article  PubMed  CAS  Google Scholar 

  5. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    Article  PubMed  CAS  Google Scholar 

  6. De La Rosa-Prieto C, De Moya-Pinilla M, Saiz-Sanchez D, Ubeda-Banon I, Arzate DM, Flores-Cuadrado A, Liberia T, Crespo C, Martinez-Marcos A (2015) Olfactory and cortical projections to bulbar and hippocampal adult-born neurons. Front Neuroanat 9:4

    Google Scholar 

  7. Frankland PW, Miller FD (2008) Regenerating your senses: multiple roles for neurogenesis in the adult brain. Nat Neurosci 11:1124–1126

    Article  PubMed  CAS  Google Scholar 

  8. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  9. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  10. Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Gotz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12:1524–1533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A (2014) Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 17:207–214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Sequerra EB (2014) Subventricular zone progenitors in time and space: generating neuronal diversity. Front Cell Neurosci 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  16. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    Article  PubMed  CAS  Google Scholar 

  18. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23:9357–9366

    PubMed  CAS  Google Scholar 

  19. Angres DH, Bettinardi-Angres K (2008) The disease of addiction: origins, treatment, and recovery. Dis Mon 54:696–721

    Article  PubMed  Google Scholar 

  20. Nestler EJ (2013) Cellular basis of memory for addiction. Dialogues Clin Neurosci 15:431–443

    PubMed  PubMed Central  Google Scholar 

  21. Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN, Koob GF (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry 64:958–965

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Noonan MA, Choi KH, Self DW, Eisch AJ (2008) Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J Neurosci 28:2516–2526

    Article  PubMed  CAS  Google Scholar 

  23. Xu C, Zhang Y, Zheng H, Loh HH, Law PY (2014) Morphine modulates mouse hippocampal progenitor cell lineages by upregulating miR-181a level. Stem Cells 32:2961–2972

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zheng H, Zhang Y, Li W, Loh HH, Law PY (2013) NeuroD modulates opioid agonist-selective regulation of adult neurogenesis and contextual memory extinction. Neuropsychopharmacology 38:770–777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30:296–309

    Article  PubMed  CAS  Google Scholar 

  26. Milekic MH, Brown SD, Castellini C, Alberini CM (2006) Persistent disruption of an established morphine conditioned place preference. J Neurosci 26:3010–3020

    Article  PubMed  CAS  Google Scholar 

  27. Stairs DJ, Klein ED, Bardo MT (2006) Effects of environmental enrichment on extinction and reinstatement of amphetamine self-administration and sucrose-maintained responding. Behav Pharmacol 17:597–604

    Article  PubMed  CAS  Google Scholar 

  28. Solinas M, Thiriet N, Chauvet C, Jaber M (2010) Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol 92:572–592

    Article  PubMed  CAS  Google Scholar 

  29. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Smith MA, Schmidt KT, Iordanou JC, Mustroph ML (2008) Aerobic exercise decreases the positive-reinforcing effects of cocaine. Drug Alcohol Depend 98:129–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Preston KL, Epstein DH (2011) Stress in the daily lives of cocaine and heroin users: relationship to mood, craving, relapse triggers, and cocaine use. Psychopharmacology 218:29–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Karlsson RM, Kircher DM, Shaham Y, O’Donnell P (2013) Exaggerated cue-induced reinstatement of cocaine seeking but not incubation of cocaine craving in a developmental rat model of schizophrenia. Psychopharmacology 226:45–51

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Noonan MA, Bulin SE, Fuller DC, Eisch AJ (2010) Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 30:304–315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Kamboj SK, Tookman A, Jones L, Curran HV (2005) The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care. Pain 117:388–395

    Article  PubMed  CAS  Google Scholar 

  35. Willner D, Cohen-Yeshurun A, Avidan A, Ozersky V, Shohami E, Leker RR (2014) Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors. PLoS One 9:e103043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 97:7579–7584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Bernstein HG, Trubner K, Krebs P, Dobrowolny H, Bielau H, Steiner J, Bogerts B (2014) Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity. Acta Histochem 116:182–190

    Article  PubMed  CAS  Google Scholar 

  38. Teuchert-Noodt G, Dawirs RR, Hildebrandt K (2000) Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 107:133–143

    Article  PubMed  CAS  Google Scholar 

  39. Ekthuwapranee K, Sotthibundhu A, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 58:418–428

    Article  PubMed  CAS  Google Scholar 

  40. Yamaguchi M, Suzuki T, Seki T, Namba T, Juan R, Arai H, Hori T, Asada T (2004) Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus. Ann N Y Acad Sci 1025:351–362

    Article  PubMed  CAS  Google Scholar 

  41. Blanco-Calvo E, Rivera P, Arrabal S, Vargas A, Pavon FJ, Serrano A, Castilla-Ortega E, Galeano P, Rubio L, Suarez J, Rodriguez de Fonseca F (2014) Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat. Front Integr Neurosci 7:106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jang MH, Shin MC, Jung SB, Lee TH, Bahn GH, Kwon YK, Kim EH, Kim CJ (2002) Alcohol and nicotine reduce cell proliferation and enhance apoptosis in dentate gyrus. NeuroReport 13:1509–1513

    Article  PubMed  CAS  Google Scholar 

  43. Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I (2002) The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 277:46645–46650

    Article  PubMed  CAS  Google Scholar 

  44. Chambers RA (2013) Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 130:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arguello AA, Fischer SJ, Schonborn JR, Markus RW, Brekken RA, Eisch AJ (2009) Effect of chronic morphine on the dentate gyrus neurogenic microenvironment. Neuroscience 159:1003–1010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318

    Article  PubMed  CAS  Google Scholar 

  47. Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera FJ, Brockhoff G, Bauer HC, Weidner N, Aigner L (2011) The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res 345:313–328

    Article  PubMed  CAS  Google Scholar 

  48. Kempermann G, Song H and Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812

    Article  PubMed  Google Scholar 

  49. von Bohlen, Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345:1–19

    Article  CAS  Google Scholar 

  50. Thiel G (2013) How Sox2 maintains neural stem cell identity. Biochem J 450:e1–2

    Article  PubMed  CAS  Google Scholar 

  51. Xu C, Zheng H, Loh HH, Law PY (2015) Morphine promotes astrocyte-preferential differentiation of mouse hippocampal progenitor cells via PKCepsilon-dependent ERK activation and TRBP phosphorylation. Stem Cells 33:2762–2772

    Article  PubMed  CAS  Google Scholar 

  52. Zheng H, Zeng Y, Chu J, Kam AY, Loh HH, Law PY (2010) Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability. J Neurosci 30:8102–8110

    Article  PubMed  CAS  Google Scholar 

  53. Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71

    Article  PubMed  CAS  Google Scholar 

  54. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Lu Y, Yang Y, Wang Z, Wang C, Du Q, Wang Q, Luan Z (2015) Isolation and culture of human oligodendrocyte precursor cells from neurospheres. Brain Res Bull 118:17–24

    Article  PubMed  CAS  Google Scholar 

  56. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    PubMed  CAS  Google Scholar 

  57. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH (2004) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164:111–122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Yamaguchi M, Suzuki T, Seki T, Namba T, Liu J, Arai H, Hori T, Shiga T (2005) Decreased cell proliferation in the dentate gyrus of rats after repeated administration of cocaine. Synapse 58:63–71

    Article  PubMed  CAS  Google Scholar 

  59. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  60. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Scerri C, Stewart CA, Breen KC, Balfour DJ (2006) The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat. Psychopharmacology 184:540–546

    Article  PubMed  CAS  Google Scholar 

  62. Recinto P, Samant AR, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD (2012) Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 37:1275–1287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Cohen A, Soleiman MT, Talia R, Koob GF, George O, Mandyam CD (2015) Extended access nicotine self-administration with periodic deprivation increases immature neurons in the hippocampus. Psychopharmacology 232:453–463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Contet C, Kim A, Le D, Iyengar SK, Kotzebue RW, Yuan CJ, Kieffer BL, Mandyam CD (2014) mu-Opioid receptors mediate the effects of chronic ethanol binge drinking on the hippocampal neurogenic niche. Addict Biol 19:770–780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463

    Article  PubMed  Google Scholar 

  66. Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Muller A, Melnik A, Waltinger TP, Ullrich O, Kempermann G (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kochman LJ, dos Santos AA, Fornal CA, Jacobs BL (2006) Despite strong behavioral disruption, Delta9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus. Brain Res 1113:86–93

    Article  PubMed  CAS  Google Scholar 

  68. Mackowiak M, Chocyk A, Markowicz-Kula K, Wedzony K (2007) Acute activation of CB1 cannabinoid receptors transiently decreases PSA-NCAM expression in the dentate gyrus of the rat hippocampus. Brain Res 1148:43–52

    Article  PubMed  CAS  Google Scholar 

  69. Mandyam CD, Norris RD, Eisch AJ (2004) Chronic morphine induces premature mitosis of proliferating cells in the adult mouse subgranular zone. J Neurosci Res 76:783–794

    Article  PubMed  CAS  Google Scholar 

  70. Nixon K, Crews FT (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 83:1087–1093

    Article  PubMed  CAS  Google Scholar 

  71. Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzman M, Galve-Roperh I (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20:2405–2407

    Article  PubMed  CAS  Google Scholar 

  72. Hardwick LJ, Ali FR, Azzarelli R, Philpott A (2015) Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 359:187–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  PubMed  CAS  Google Scholar 

  74. Harburg GC, Hall FS, Harrist AV, Sora I, Uhl GR, Eisch AJ (2007) Knockout of the mu opioid receptor enhances the survival of adult-generated hippocampal granule cell neurons. Neuroscience 144:77–87

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Pettit AS, Desroches R, Bennett SA (2012) The opiate analgesic buprenorphine decreases proliferation of adult hippocampal neuroblasts and increases survival of their progeny. Neuroscience 200:211–222

    Article  PubMed  CAS  Google Scholar 

  76. Kahn L, Alonso G, Normand E, Manzoni OJ (2005) Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus. Eur J Neurosci 21:493–500

    Article  PubMed  Google Scholar 

  77. Fischer SJ, Arguello AA, Charlton JJ, Fuller DC, Zachariou V, Eisch AJ (2008) Morphine blood levels, dependence, and regulation of hippocampal subgranular zone proliferation rely on administration paradigm. Neuroscience 151:1217–1224

    Article  PubMed  CAS  Google Scholar 

  78. Arguello AA, Harburg GC, Schonborn JR, Mandyam CD, Yamaguchi M, Eisch AJ (2008) Time course of morphine’s effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons. Neuroscience 157:70–79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, Terenius L, Eriksson PS (2003) Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 17:1159–1172

    Article  PubMed  Google Scholar 

  80. Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29:5290–5305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Wang X, Ye L, Zhou Y, Liu MQ, Zhou DJ, Ho WZ (2011) Inhibition of anti-HIV microRNA expression: a mechanism for opioid-mediated enhancement of HIV infection of monocytes. Am J Pathol 178:41–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Tsai SY, Lee CT, Hayashi T, Freed WJ, Su TP (2010) Delta opioid peptide DADLE and naltrexone cause cell cycle arrest and differentiation in a CNS neural progenitor cell line. Synapse 64:267–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Shoae-Hassani A, Sharif S, Tabatabaei SA, Verdi J (2011) Could the endogenous opioid, morphine, prevent neural stem cell proliferation? Med Hypotheses 76:225–229

    Article  PubMed  CAS  Google Scholar 

  84. Persson AI, Thorlin T, Bull C, Eriksson PS (2003) Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 23:360–372

    Article  PubMed  CAS  Google Scholar 

  85. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525

    Article  PubMed  CAS  Google Scholar 

  86. Xu C, Hong MH, Zhang LS, Hou YY, Wang YH, Wang FF, Chen YJ, Xu XJ, Chen J, Xie X, Ma L, Chi ZQ, Liu JG (2010) Serine 363 of the {delta}-opioid receptor is crucial for adopting distinct pathways to activate ERK1/2 in response to stimulation with different ligands. J Cell Sci 123:4259–4270

    Article  PubMed  CAS  Google Scholar 

  87. Zheng H, Loh HH, Law PY (2008) Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation. Mol Pharmacol 73:178–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Zheng H, Zeng Y, Zhang X, Chu J, Loh HH, Law PY (2010) mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD. Mol Pharmacol 77:102–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Zheng H, Chu J, Zeng Y, Loh HH, Law PY (2010) Yin Yang 1 phosphorylation contributes to the differential effects of mu-opioid receptor agonists on microRNA-190 expression. J Biol Chem 285:21994–22002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Brown TE, Lee BR, Ryu V, Herzog T, Czaja K, Dong Y (2010) Reducing hippocampal cell proliferation in the adult rat does not prevent the acquisition of cocaine-induced conditioned place preference. Neurosci Lett 481:41–46

    Article  PubMed  CAS  Google Scholar 

  91. Dominguez-Escriba L, Hernandez-Rabaza V, Soriano-Navarro M, Barcia JA, Romero FJ, Garcia-Verdugo JM, Canales JJ (2006) Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. Eur J Neurosci 24:586–594

    Article  PubMed  CAS  Google Scholar 

  92. Poon HF, Abdullah L, Mullan MA, Mullan MJ, Crawford FC (2007) Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochem Int 50:69–73

    Article  PubMed  CAS  Google Scholar 

  93. Garcia-Fuster MJ, Perez JA, Clinton SM, Watson SJ, Akil H (2010) Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. Eur J Neurosci 31:79–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Garcia-Fuster MJ, Flagel SB, Mahmood ST, Mayo LM, Thompson RC, Watson SJ, Akil H (2011) Decreased proliferation of adult hippocampal stem cells during cocaine withdrawal: possible role of the cell fate regulator FADD. Neuropsychopharmacology 36:2303–2317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Lee CT, Chen J, Hayashi T, Tsai SY, Sanchez JF, Errico SL, Amable R, Su TP, Lowe RH, Huestis MA, Shen J, Becker KG, Geller HM, Freed WJ (2008) A mechanism for the inhibition of neural progenitor cell proliferation by cocaine. PLoS Med 5:e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362

    Article  PubMed  CAS  Google Scholar 

  98. Zhao C, Sun G, Ye P, Li S, Shi Y (2013) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 3:1329

    PubMed  PubMed Central  Google Scholar 

  99. Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci USA 107:1876–1881

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 6:e23461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Prenderville JA, Kelly AM, Downer EJ (2015) The role of cannabinoids in adult neurogenesis. Br J Pharmacol 172:3950–3963

    Article  PubMed  CAS  Google Scholar 

  103. Galve-Roperh I, Chiurchiu V, Diaz-Alonso J, Bari M, Guzman M, Maccarrone M (2013) Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52:633–650

    Article  PubMed  CAS  Google Scholar 

  104. Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104–3116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  PubMed  CAS  Google Scholar 

  106. Aguado T, Palazuelos J, Monory K, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26:1551–1561

    Article  PubMed  CAS  Google Scholar 

  107. Shinjyo N, Di Marzo V (2013) The effect of cannabichromene on adult neural stem/progenitor cells. Neurochem Int 63:432–437

    Article  PubMed  CAS  Google Scholar 

  108. Alen F, Mouret A, Viveros MP, Llorente R, Lepousez G, Lledo PM, Lopez-Moreno JA (2010) Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis. Int J Neuropsychopharmacol 13:191–205

    Article  PubMed  CAS  Google Scholar 

  109. Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19:1704–1706

    PubMed  CAS  Google Scholar 

  110. Mao L, Wang JQ (2001) Gliogenesis in the striatum of the adult rat: alteration in neural progenitor population after psychostimulant exposure. Brain Res Dev Brain Res 130:41–51

    Article  PubMed  CAS  Google Scholar 

  111. Barr JL, Renner KJ, Forster GL (2010) Withdrawal from chronic amphetamine produces persistent anxiety-like behavior but temporally-limited reductions in monoamines and neurogenesis in the adult rat dentate gyrus. Neuropharmacology 59:395–405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Dabe EC, Majdak P, Bhattacharya TK, Miller DS, Rhodes JS (2013) Chronic d-amphetamine administered from childhood to adulthood dose-dependently increases the survival of new neurons in the hippocampus of male C57BL/6 J mice. Neuroscience 231:125–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A (2011) Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 4:28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Abrous DN, Adriani W, Montaron MF, Aurousseau C, Rougon G, Le Moal M, Piazza PV (2002) Nicotine self-administration impairs hippocampal plasticity. J Neurosci 22:3656–3662

    PubMed  CAS  Google Scholar 

  115. Mudo G, Belluardo N, Mauro A, Fuxe K (2007) Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience 145:470–483

    Article  PubMed  CAS  Google Scholar 

  116. Shingo AS, Kito S (2005) Effects of nicotine on neurogenesis and plasticity of hippocampal neurons. J Neural Transm 112:1475–1478

    Article  PubMed  CAS  Google Scholar 

  117. Nixon K (2006) Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in chronic alcoholism. Hippocampus 16:287–295

    Article  PubMed  CAS  Google Scholar 

  118. Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K (2014) Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 54:103–113

    Article  PubMed  CAS  Google Scholar 

  119. Herrera DG, Yague AG, Johnsen-Soriano S, Bosch-Morell F, Collado-Morente L, Muriach M, Romero FJ, Garcia-Verdugo JM (2003) Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc Natl Acad Sci USA 100:7919–7924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Nixon K, Crews FT (2004) Temporally specific burst in cell proliferation increases hippocampal neurogenesis in protracted abstinence from alcohol. J Neurosci 24:9714–9722

    Article  PubMed  CAS  Google Scholar 

  121. Nixon K, Kim DH, Potts EN, He J, Crews FT (2008) Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis 31:218–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  122. Rice AC, Bullock MR, Shelton KL (2004) Chronic ethanol consumption transiently reduces adult neural progenitor cell proliferation. Brain Res 1011:94–98

    Article  PubMed  CAS  Google Scholar 

  123. He J, Nixon K, Shetty AK, Crews FT (2005) Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci 21:2711–2720

    Article  PubMed  Google Scholar 

  124. Crews FT, Mdzinarishvili A, Kim D, He J, Nixon K (2006) Neurogenesis in adolescent brain is potently inhibited by ethanol. Neuroscience 137:437–445

    Article  PubMed  CAS  Google Scholar 

  125. McClain JA, Hayes DM, Morris SA, Nixon K (2011) Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 519:2697–2710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Campbell JC, Stipcevic T, Flores RE, Perry C, Kippin TE (2014) Alcohol exposure inhibits adult neural stem cell proliferation. Exp Brain Res 232:2775–2784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  127. Hernandez-Rabaza V, Navarro-Mora G, Velazquez-Sanchez C, Ferragud A, Marin MP, Garcia-Verdugo JM, Renau-Piqueras J, Canales JJ (2010) Neurotoxicity and persistent cognitive deficits induced by combined MDMA and alcohol exposure in adolescent rats. Addict Biol 15:413–423

    Article  PubMed  CAS  Google Scholar 

  128. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95:73–88

    Article  PubMed  CAS  Google Scholar 

  129. Cho KO, Kim SK, Rhee GS, Kwack SJ, Cho DH, Sung KW, Kim SY (2007) Chronic 3,4-methylenedioxymethamphetamine treatment suppresses cell proliferation in the adult mouse dentate gyrus. Eur J Pharmacol 566:120–123

    Article  PubMed  CAS  Google Scholar 

  130. Lagace DC, Yee JK, Bolanos CA, Eisch AJ (2006) Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biol Psychiatry 60:1121–1130

    Article  PubMed  CAS  Google Scholar 

  131. Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361

    Article  PubMed  CAS  Google Scholar 

  132. Li T, Pan YW, Wang W, Abel G, Zou J, Xu L, Storm DR, Xia Z (2013) Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb. PLoS One 8:e61948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  133. Engstrom A, Wang H, Xia Z (2015) Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases. Toxicol In Vitro 29:1146–1155

    Article  PubMed  CAS  Google Scholar 

  134. Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17:471–480

    Article  PubMed  CAS  Google Scholar 

  135. Brandt MD, Hubner M, Storch A (2012) Brief report: Adult hippocampal precursor cells shorten S-phase and total cell cycle length during neuronal differentiation. Stem Cells 30:2843–2847

    Article  PubMed  CAS  Google Scholar 

  136. Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538

    Article  PubMed  CAS  Google Scholar 

  137. Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116:4947–4955

    Article  PubMed  CAS  Google Scholar 

  138. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5:320–331

    Article  PubMed  CAS  Google Scholar 

  139. Tsunekawa Y, Kikkawa T, Osumi N (2014) Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. Dev Growth Differ 56:349–357

    Article  PubMed  CAS  Google Scholar 

  140. Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun 2:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ali F, Hindley C, McDowell G, Deibler R, Jones A, Kirschner M, Guillemot F, Philpott A (2011) Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development 138:4267–4277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Liu C, Zhao X (2009) MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med 11:141–152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  143. Ji F, Lv X, Jiao J (2013) The role of microRNAs in neural stem cells and neurogenesis. J Genet Genomics 40:61–66

    Article  PubMed  CAS  Google Scholar 

  144. Stergiopoulos A, Elkouris M, Politis PK (2014) Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification. Front Cell Neurosci 8:454

    PubMed  PubMed Central  Google Scholar 

  145. Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484–10492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55

    Article  PubMed  CAS  Google Scholar 

  147. Zhou ZD, Kumari U, Xiao ZC, Tan EK (2010) Notch as a molecular switch in neural stem cells. IUBMB Life 62:618–623

    Article  PubMed  CAS  Google Scholar 

  148. Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, Briscoe J, Novitch BG (2015) Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell 33:373–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  149. Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, Lie DC, Jessberger S (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108:5807–5812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  150. Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis PK (2010) Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol 8:e1000565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10:1001–1014

    Article  PubMed  CAS  Google Scholar 

  152. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  153. Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26:1663–1672

    Article  PubMed  CAS  Google Scholar 

  154. Galichet C, Guillemot F, Parras CM (2008) Neurogenin 2 has an essential role in development of the dentate gyrus. Development 135:2031–2041

    Article  PubMed  CAS  Google Scholar 

  155. Roybon L, Hjalt T, Stott S, Guillemot F, Li JY, Brundin P (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4:e4779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, Enikolopov G, Kempermann G, Hevner RF (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717

    Article  PubMed  CAS  Google Scholar 

  157. Guo J, Zhou X, Chen Y, Bai M, Yang X, Zhao K, Hao W, Wei W, Zhang Y (2014) mGluR3 promotes proliferation of human embryonic cortical neural progenitor cells by activating ERK1/2 and JNK2 signaling pathway in vitro. Cell Mol Biol (Noisy-le-grand) 60:42–49

    CAS  Google Scholar 

  158. Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  159. Nagao M, Sugimori M, Nakafuku M (2007) Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 27:3982–3994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  160. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD (2011) Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 35:1928–1937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH (2012) MicroRNAs in opioid pharmacology. J Neuroimmune Pharmacol 7:808–819

    Article  PubMed  PubMed Central  Google Scholar 

  162. Doze VA, Perez DM (2012) G-protein-coupled receptors in adult neurogenesis. Pharmacol Rev 64:645–675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  163. Pomara C, Cassano T, D’Errico S, Bello S, Romano AD, Riezzo I, Serviddio G (2012) Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem 19:5647–5657

    Article  PubMed  CAS  Google Scholar 

  164. Anderson SM, Pierce RC (2005) Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther 106:389–403

    Article  PubMed  CAS  Google Scholar 

  165. Hummel M, Unterwald EM (2002) D1 dopamine receptor: a putative neurochemical and behavioral link to cocaine action. J Cell Physiol 191:17–27

    Article  PubMed  CAS  Google Scholar 

  166. Devroye C, Filip M, Przegalinski E, McCreary AC, Spampinato U (2013) Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res 230:537–545

    Article  PubMed  CAS  Google Scholar 

  167. Miller GM (2011) The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 116:164–176

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  168. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Davies M (2003) The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry Neurosci 28:263–274

    PubMed  PubMed Central  Google Scholar 

  170. Lippi G, Steinert JR, Marczylo EL, D’Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW (2011) Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J Cell Biol 194:889–904

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  171. Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32:619–632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  172. Hollins SL, Zavitsanou K, Walker FR, Cairns MJ (2014) Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Transl Psychiatry 4:e452

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  173. Most D, Workman E, Harris RA (2014) Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation. Front Mol Neurosci 7:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Zoli M, Pistillo F, Gotti C (2015) Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 96:302–311

    Article  PubMed  CAS  Google Scholar 

  175. Taki FA, Pan X, Lee MH, Zhang B (2014) Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs. Sci Rep 4:7513

    Article  PubMed  CAS  Google Scholar 

  176. Simmons MA (2005) Functional selectivity, ligand-directed trafficking, conformation-specific agonism: what’s in a name? Mol Interv 5:154–157

    Article  PubMed  CAS  Google Scholar 

  177. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  PubMed  CAS  Google Scholar 

  178. Zheng H, Loh HH, Law PY (2013) Posttranslation modification of G protein-coupled receptor in relationship to biased agonism. Methods Enzymol 522:391–408

    Article  PubMed  CAS  Google Scholar 

  179. Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    Article  PubMed  Google Scholar 

  180. Hudson BD, Hebert TE, Kelly ME (2010) Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol 77:1–9

    Article  PubMed  CAS  Google Scholar 

  181. Franklin JM, Vasiljevik T, Prisinzano TE, Carrasco GA (2013) Cannabinoid agonists increase the interaction between beta-Arrestin 2 and ERK1/2 and upregulate beta-Arrestin 2 and 5-HT(2A) receptors. Pharmacol Res 68:46–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  182. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  183. Liu X, Ma L, Li HH, Huang B, Li YX, Tao YZ, Ma L (2015) beta-Arrestin-biased signaling mediates memory reconsolidation. Proc Natl Acad Sci USA 112:4483–4488

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  184. Canales JJ (2007) Adult neurogenesis and the memories of drug addiction. Eur Arch Psychiatry Clin Neurosci 257:261–270

    Article  PubMed  Google Scholar 

  185. Bergmann O, Spalding KL, Frisen J (2015) Adult Neurogenesis in Humans. Cold Spring Harb Perspect Biol 7:a018994

    Article  PubMed  Google Scholar 

  186. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Jun H, Mohammed Qasim Hussaini S, Rigby MJ, Jang MH (2012) Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast 2012:854285

    PubMed  PubMed Central  Google Scholar 

  188. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Loh, H.H. & Law, PY. Effects of addictive drugs on adult neural stem/progenitor cells. Cell. Mol. Life Sci. 73, 327–348 (2016). https://doi.org/10.1007/s00018-015-2067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2067-z

Keywords

Navigation