Skip to main content

Advertisement

Log in

MicroRNAs in Adult and Embryonic Neurogenesis

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neurogenesis is defined as a process that includes the proliferation of neural stem/progenitor cells (NPCs) and the differentiation of these cells into new neurons that integrate into the existing neuronal circuitry. MicroRNAs (miRNAs) are a recently discovered class of small non-protein coding RNA molecules implicated in a wide range of diverse gene regulatory mechanisms. More and more data demonstrate that numerous miRNAs are expressed in a spatially and temporally controlled manners in the nervous system, which suggests that miRNAs have important roles in the gene regulatory networks involved in both brain development and adult neural plasticity. This review summarizes the roles of miRNAs-mediated gene regulation in the nervous system with focus on neurogenesis in both embryonic and adult brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature, 437, 894–897.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26, 10508–10513.

    Article  CAS  PubMed  Google Scholar 

  • Balordi, F., & Fishell, G. (2007). Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. Journal of Neuroscience, 27, 5936–5947.

    Article  CAS  PubMed  Google Scholar 

  • Barkho, B. Z., Munoz, A. E., Li, X., Li, L., Cunningham, L. A., & Zhao, X. (2008). Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells, 26, 3139–3149.

    Article  CAS  PubMed  Google Scholar 

  • Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 13, 1097–1101.

    Article  CAS  PubMed  Google Scholar 

  • Burns, K. A., Ayoub, A. E., Breunig, J. J., Adhami, F., Weng, W. L., Colbert, M. C., et al. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia-hypoxia. Cerebral Cortex, 17, 2585–2592.

    Article  PubMed  Google Scholar 

  • Cameron, H. A., Tanapat, P., & Gould, E. (1998). Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience, 82, 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.

    Article  CAS  PubMed  Google Scholar 

  • Chalfie, M., Horvitz, H. R., & Sulston, J. E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell, 24, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L. C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature [Epub ahead of print].

  • Choi, P. S., Zakhary, L., Choi, W. Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57, 41–55.

    Article  CAS  PubMed  Google Scholar 

  • Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 2422–2427.

    Article  CAS  PubMed  Google Scholar 

  • Corbin, J. G., Gaiano, N., Juliano, S. L., Poluch, S., Stancik, E., & Haydar, T. F. (2008). Regulation of neural progenitor cell development in the nervous system. Journal of Neurochemistry, 106, 2272–2287.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.

    Article  CAS  PubMed  Google Scholar 

  • Devor, E. J., Huang, L., Abdukarimov, A., & Abdurakhmonov, I. Y. (2009). Methodologies for in vitro cloning of small RNAs and application for plant genome(s). International Journal of Plant Genomics, 2009, 915061.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics and Development, 13, 543–550.

    Article  CAS  PubMed  Google Scholar 

  • Duan, X., Chang, J. H., Ge, S., Faulkner, R. L., Kim, J. Y., Kitabatake, Y., et al. (2007). Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130, 1146–1158.

    Article  CAS  PubMed  Google Scholar 

  • Dupret, D., Revest, J. M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., et al. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE, 3, e1959.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Ferri, A. L. M., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131, 3805–3819.

    Article  CAS  PubMed  Google Scholar 

  • Fiore, R., Siegel, G., & Schratt, G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1779, 471–478.

    Article  CAS  Google Scholar 

  • Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 6, 63–66.

    Article  CAS  PubMed  Google Scholar 

  • Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.

    Article  CAS  PubMed  Google Scholar 

  • Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Pagano, S. F., et al. (1999). Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. Journal of Neuroscience, 19, 3287–3297.

    CAS  PubMed  Google Scholar 

  • Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., et al. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44, 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Houbaviy, H. B., Dennis, L., Jaenisch, R., & Sharp, P. A. (2005). Characterization of a highly variable eutherian microRNA gene. RNA, 11, 1245–1257.

    Article  CAS  PubMed  Google Scholar 

  • Houbaviy, H. B., Murray, M. F., & Sharp, P. A. (2003). Embryonic stem cell-specific microRNAs. Developmental Cell, 5, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., et al. (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11, 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Consiglio, A., Lie, D. C., et al. (2009). Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learning and Memory, 16, 147–154.

    Article  PubMed  Google Scholar 

  • Jin, K. L., Wang, X. M., Xie, L., Mao, X. O., Zhu, W., Wang, Y., et al. (2006). Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 13198–13202.

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H. A., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.

    Article  PubMed  CAS  Google Scholar 

  • Keller, G. (2005). Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes and Development, 19, 1129–1155.

    Article  CAS  PubMed  Google Scholar 

  • Keller, G., Kennedy, M., Papayannopoulou, T., & Wiles, M. V. (1993). Hematopoietic commitment during embryonic stem-cell differentiation in culture. Molecular and Cellular Biology, 13, 473–486.

    CAS  PubMed  Google Scholar 

  • Kempermann, G., & Kronenberg, G. (2003). Depressed new neurons—Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biological Psychiatry, 54, 499–503.

    Article  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, M., & Keller, G. M. (2003). Hematopoietic commitment of ES cells in culture. Differentiation of Embryonic Stem Cells, 365, 39–59.

    Article  Google Scholar 

  • Kilpatrick, T. J., & Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors—Requirements for proliferation and differentiation. Neuron, 10, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A microRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 360–365.

    Article  CAS  PubMed  Google Scholar 

  • Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 98, 4752–4757.

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.

    Article  CAS  PubMed  Google Scholar 

  • Lagace, D. C., Whitman, M. C., Noonan, M. A., Ables, J. L., DeCarolis, N. A., Arguello, A. A., et al. (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. Journal of Neuroscience, 27, 12623–12629.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.

    Article  CAS  PubMed  Google Scholar 

  • Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.

    Article  CAS  PubMed  Google Scholar 

  • Larson, J., Jessen, R. E., Kim, D., Fine, A. K. S., & du Hoffmann, J. (2005). Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. Journal of Neuroscience, 25, 9460–9469.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans Heterochronic gene Lin-4 encodes small RNAS with antisense complementarity to Lin-14. Cell, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Barkho, B. Z., Luo, Y., Smrt, R. D., Santistevan, N. J., Liu, C., et al. (2008). Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. Journal of Biological Chemistry, 283, 27644–27652.

    Article  CAS  PubMed  Google Scholar 

  • Li, O., Li, J. M., & Droge, P. (2007). DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells. FEBS Letters, 581, 3533–3537.

    Article  CAS  PubMed  Google Scholar 

  • Li, O., Vasudevan, D., Davey, C. A., & Droge, P. (2006). High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis, 44, 523–529.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. K., & Zhao, X. Y. (2008). Epigenetic regulation of mammalian stem cells. Stem Cells and Development, 17, 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  • Lie, D. C., Dziewczapolski, G., Willhoite, A. R., Kaspar, B. K., Shults, C. W., & Gage, F. H. (2002). The adult substantia nigra contains progenitor cells with neurogenic potential. Journal of Neuroscience, 22, 6639–6649.

    CAS  PubMed  Google Scholar 

  • Lu, Y., Thomson, J. M., Wong, H. Y. F., Hammond, S. M., & Hogan, B. L. M. (2007). Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology, 310, 442–453.

    Article  CAS  PubMed  Google Scholar 

  • Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672.

    Article  CAS  PubMed  Google Scholar 

  • Makeyev, E. V., Zhang, J. W., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative Pre-mRNA splicing. Molecular Cell, 27, 435–448.

    Article  CAS  PubMed  Google Scholar 

  • Martin, G. R. (1981). Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 7634–7638.

    Article  CAS  Google Scholar 

  • Mayoral, R. J., Pipkin, M. E., Pachkov, M., van Nimwegen, E., Rao, A., & Monticelli, S. (2009). MicroRNA-221–222 regulate the cell cycle in mast cells. Journal of Immunology, 182, 433–445.

    CAS  Google Scholar 

  • Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a–5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17, 3030–3042.

    Article  CAS  PubMed  Google Scholar 

  • Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967.

    Article  CAS  PubMed  Google Scholar 

  • Morozova, O., & Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Morshead, C. M., Reynolds, B. A., Craig, C. G., Mcburney, M. W., Staines, W. A., Morassutti, D., et al. (1994). Neural stem-cells in the adult mammalian forebrain—a relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell, 135, 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Orom, U. A., Nielsen, F. C., & Lund, A. H. (2008). MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell, 30, 460–471.

    Article  PubMed  CAS  Google Scholar 

  • Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19, 8487–8497.

    CAS  PubMed  Google Scholar 

  • Palmer, T. D., Takahashi, J., & Gage, F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Molecular and Cellular Neuroscience, 8, 389–404.

    Article  CAS  PubMed  Google Scholar 

  • Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.

    CAS  PubMed  Google Scholar 

  • Pencea, V., Bingaman, K. D., Freedman, L. J., & Luskin, M. B. (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Experimental Neurology, 172, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Pomraning, K. R., Smith, K. M., & Freitag, M. (2009). Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods, 47, 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, B. A., Tetzlaff, W., & Weiss, S. (1992). A multipotent Egf-responsive striatal embryonic progenitor-cell produces neurons and astrocytes. Journal of Neuroscience, 12, 4565–4574.

    CAS  PubMed  Google Scholar 

  • Sanosaka, T., Namihira, M., & Nakashima, K. (2009). Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics, 4, 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. (Erratum in Nature 441, 902).

    Article  CAS  PubMed  Google Scholar 

  • Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13.

    Article  PubMed  Google Scholar 

  • Shi, Y. H., Lie, D. C., Taupin, P., Nakashima, K., Ray, J., Yu, R. T., et al. (2004). Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 427, 78–83.

    Article  CAS  PubMed  Google Scholar 

  • Shihabuddin, L. S., Horner, P. J., Ray, J., & Gage, F. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. Journal of Neuroscience, 20, 8727–8735.

    CAS  PubMed  Google Scholar 

  • Shimozaki, K., Namihira, M., Nakashima, K., & Taga, T. (2005). Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. Journal of Neurochemistry, 93, 432–439.

    Article  CAS  PubMed  Google Scholar 

  • Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 270, 488–498.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. J., Jin, K. L., Childs, J. T., Xie, L., Mao, X. O., & Greenberg, D. A. (2005). Neuronal nitric oxide synthase and ischemia-induced neurogenesis. Journal of Cerebral Blood Flow and Metabolism, 25, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Tay, Y., Zhang, J. Q., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124.

    Article  CAS  PubMed  Google Scholar 

  • Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Thai, T. H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C. C., Xue, Y. Z., et al. (2007). Regulation of the germinal center response by microRNA-155. Science, 316, 604–608.

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.

    Article  CAS  PubMed  Google Scholar 

  • Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. S., Aurora, A. B., Johnson, B. A., Qi, X. X., McAnally, J., Hill, J. A., et al. (2008a). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008b). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. L., Keys, D. N., Au-Young, J. K., & Chen, C. F. (2009). MicroRNAs in embryonic stem cells. Journal of Cellular Physiology, 218, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. M., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39, 380–385.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience, 16, 7599–7609.

    CAS  PubMed  Google Scholar 

  • Williams, A. E. (2008). Functional aspects of animal microRNAs. Cellular and Molecular Life Sciences, 65, 545–562.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zeng, J. Q., Wan, G., Hu, G. B., Yan, H., & Ma, L. X. (2009). Construction of siRNA/miRNA expression vectors based on a one-step PCR process. BMC Biotechnology, 9, 53.

    Article  PubMed  Google Scholar 

  • Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314, 2618–2633.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Yao, H., Zhu, P. C., Zhang, X. Q., Pan, Q. H., Gong, C., et al. (2007). Iet-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C. M., Deng, W., & Gage, F. H. (2008a). Mechanisms and functional implications of adult neurogenesis. Cell, 132, 645–660.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J. J., Lin, J. H., Yang, H., Kong, W., He, L. L., Ma, X., et al. (2008b). MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. Journal of Biological Chemistry, 283, 31079–31086.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C., Sun, G., Li, S., & Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural and Molecular Biology, 16, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Ueba, T., Christie, B. R., Barkho, B., McConnell, M. J., Nakashima, K., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 100, 6777–6782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Weixiang Guo for helping with the figures and Dr. Zhaoqian Teng for helping with the references. Images in this manuscript were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility (http://hsc.unm.edu/crtc/microscopy/facility.html). This work is funded by NIH MH080434 and MH078972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Zhao, X. MicroRNAs in Adult and Embryonic Neurogenesis. Neuromol Med 11, 141–152 (2009). https://doi.org/10.1007/s12017-009-8077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8077-y

Keywords

Navigation