Skip to main content
Log in

Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we discuss a regular quantization process on generalized Hartogs triangles by using Calabi’s diastasis function and Rawnsley’s \(\varepsilon \)-function. On the other hand, we also exhibit the existence of a class of Kähler-Einstein submanifolds of infinite dimensional complex projective spaces \({\mathbb {C}}{\mathbb {P}}^\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin, F.A.: Quantization. Math. USSR Izvest 8, 1109–1163 (1974)

    Article  Google Scholar 

  2. Bi, E.C., Feng, Z.M., Su. G.C., Tu, Z.H.: Rawnsley’s \(\varepsilon \)-function on some Hartogs type domains over bounded symmetric domains and its applications. J. Geom. Phys. 135, 187–203 (2019)

  3. Bi, E.C., Hou, Z.L.: Canonical metrics on a generalized Hartogs triangles. Accepted by C. R. Math. Acad. Sci. Paris (2021)

  4. Bi, E.C., Su, G.C.: Balanced metric and Berezin quantization on Hartogs triangles. Ann. Math. Pura. Appl. 200(1), 273–285 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds I: geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7(1), 45–62 (1990)

    Article  MathSciNet  Google Scholar 

  6. Calabi, E.: Isometric embedding of complex manifold. Ann. Math. 58, 1–23 (1953)

    Article  MathSciNet  Google Scholar 

  7. Chakrabarti, D., Zeytuncu, Y.: \(L^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Amer. Math. Soc. 144(4), 1643–1653 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chakrabarti, D., Edholm, L.D., McNeal, J.D.: Duality and approximation of Bergman spaces. Adv. Math. 341, 616–656 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chakrabarti, D., Konkel, A., Mainkar, M., Miller, E.: Bergman kernels of elementary Reinhardt domains. Pac. J. Math. 306(1), 67–93 (2020)

  10. Chen, L.: The \(L^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains. J. Math. Anal. Appl. 448(1), 598–610 (2017)

    Article  MathSciNet  Google Scholar 

  11. Edholm, L.D.: Bergman theory of certain generalized Hartogs triangles. Pac. J. Math. 248(2), 327–342 (2016)

    Article  MathSciNet  Google Scholar 

  12. Edholm, L.D., McNeal, J.D.: Sobolev mapping of some holomorphic projections. J. Geom. Anal. 30(2), 1293–1311 (2020)

    Article  MathSciNet  Google Scholar 

  13. Edholm, L.D., McNeal, J.D.: Bergman subspaces and subkernels: degenerate \(L^p\) mapping and zeroes. J. Geom. Anal. 27(4), 2658–2683 (2017)

    Article  MathSciNet  Google Scholar 

  14. Edholm, L.D., McNeal, J.D.: The Bergman projection on fat Hartogs triangles: \(L^p\) boundedness. Proc. Amer. Math. Soc. 144(5), 2185–2196 (2015)

    Article  Google Scholar 

  15. Engli\(\rm \check{s}\), M.: Berezin quantization and reproducing kernels on complex domains. Trans. Amer. Math. Soc. 348(2), 411–479 (1996)

  16. Feng, Z.M., Tu, Z.H.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Glob. Anal. Geom. 47(4), 305–333 (2015)

    Article  MathSciNet  Google Scholar 

  17. Feng, Z.M., Tu, Z.H.: On canonical metrics on Cartan-Hartogs domains. Math. Z. 278(1–2), 301–320 (2014)

    Article  MathSciNet  Google Scholar 

  18. Loi, A., Mossa, R.: Berezin quantization of homogeneous bounded domains. Geom. Dedicata 161(1), 119–128 (2012)

    Article  MathSciNet  Google Scholar 

  19. Loi, A., Mossa, R.: Some remarks on homogeneous Kähler manifolds. Geom. Dedicata 179(1), 377–383 (2015)

    Article  MathSciNet  Google Scholar 

  20. Loi, A., Zedda, M.: Kähler-Einstein submanifolds of the infinite dimensional projective space. Math. Ann. 350(1), 145–154 (2011)

    Article  MathSciNet  Google Scholar 

  21. Takeuchi, M.: Homogeneous Kähler submanifolds in projective spaces. Japan J. Math. 4(1), 171–219 (1978)

    Article  MathSciNet  Google Scholar 

  22. Yang, H., Bi, E.C.: Remarks on Rawnsleys \(\varepsilon \)-function on the Fock-Bargmann-Hartogs domains. Arch. Math. (Basel) 112(4), 417–427 (2019)

  23. Zapałowski, P.: Proper holomorphic mappings between generalized Hartogs triangles. Ann. Math. Pure. Appl 196(3), 1055–1071 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zedda, M.: Berezin-Engliš’ quantization of Cartan-Hartogs domain. J. Geom. Phys. 100, 62–67 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank the referees, who read the paper very carefully and made many useful suggestions. This work was partly supported by the National Natural Science Foundation of China (No. 11901327 and No. ss11871380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enchao Bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Bi, E. Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles. Arch. Math. 118, 605–614 (2022). https://doi.org/10.1007/s00013-022-01718-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-022-01718-0

Keywords

Mathematics Subject Classification

Navigation