Skip to main content
Log in

A note on Weyl groups and root lattices

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (WS) is a Coxeter system of finite rank n with set of reflections T and if \(t_1, \ldots t_n \in T\) are reflections in W that generate W, then \(P:= \langle t_1, \ldots t_{n-1}\rangle \) is a parabolic subgroup of (WS) of rank \(n-1\) (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (WS) is crystallographic as well, then all the reflections \(t \in T\) such that \(\langle P, t\rangle = W\) form a single orbit under conjugation by P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balnojan, S., Hertling, C.: Reduced and nonreduced presentations of Weyl group elements. arXiv:1604.07967 (2016)

  2. Baumeister, B., Gobet, T., Roberts, K., Wegener, P.: On the Hurwitz action in finite Coxeter groups. J. Group Theory 20, 103–131 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bessis, D.: The dual braid monoid. Annales scientifiques de l’École Normale Supérieure 36(5), 647–683 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bourbaki, N.: Lie Groups and Lie Algebras, Chapters 4–6. Springer, Berlin (2002)

    Book  Google Scholar 

  5. Brady, N., McCammond, J.P., Mühlherr, B., Neumann, W.D.: Rigidity of Coxeter groups and Artin groups. Geom. Dedicata 94(1), 91–109 (2002)

    Article  MathSciNet  Google Scholar 

  6. Brady, T., Watt, C.: \(K(\pi , 1)^{\prime }\)s for Artin groups of finite type. In: Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa 2000), Geom. Dedicata, vol. 94, pp. 225–250 (2002)

  7. Carter, R.W.: Conjugacy classes in the Weyl group. Compos. Math. 25, 1–59 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Caprace, P.E., Przytycki, P.: Twist-rigid Coxeter groups. Geom. Topol. 14, 2243–2275 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dörner, A.: Isotropieuntergruppen der artinschen Zopfgruppen. Bonner Mathematische Schriften 255, Univ. Bonn, Bonn (1993)

  10. Dyer, M.J.: Reflection subgroups of Coxeter systems. J. Algebra 135(1), 57–73 (1990)

    Article  MathSciNet  Google Scholar 

  11. Dyer, M.J., Lehrer, G.I.: Reflection subgroups of finite and affine Weyl groups. Trans. Am. Math. Soc. 363(11), 5971–6005 (2011)

    Article  MathSciNet  Google Scholar 

  12. Huang, J., Przytycki, P.: A step towards Twist Conjecture. arXiv:1708.00960 (2017)

  13. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

  14. Mühlherr, B., Nuida, K.: Intrinsic reflections in Coxeter systems. J. Combin. Theory Ser. A 144, 326–360 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mühlherr, B.: The isomorphism problem for Coexter groups. arXiv:math.GR/0506572 (2005)

  16. Taylor, D.: Reflection subgroups of finite complex reflection subgroups. J. Algebra 366, 218–234 (2012)

    Article  MathSciNet  Google Scholar 

  17. Vinberg, E.: Personal Communication (2017)

  18. Wegener, P.: On the Hurwitz action in affine Coxeter groups. arXiv:1710.06694 (2017)

Download references

Acknowledgements

We like to thank Professor Ernest Vinberg for fruitful discussions with him as well as for explaining to us his idea of a uniform proof of Theorem 1.5. We also wish to thank the anonymous referee for helpful comments, and for making us aware of [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Baumeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumeister, B., Wegener, P. A note on Weyl groups and root lattices. Arch. Math. 111, 469–477 (2018). https://doi.org/10.1007/s00013-018-1234-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1234-5

Mathematics Subject Classification

Keywords

Navigation