Skip to main content

Advertisement

Log in

Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed database (on July 20, 2023). The search terms used were “delirium”, “post operative cognitive dysfunction”, “perioperative neurocognitive disorder”, “inflammation” and “systemic”, alone and in combination. All articles identified were English-language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated and how we can translate these findings into prevention and/or treatment for PND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

PND:

Perioperative neurocognitive disorders

POCD:

Postoperative neurocognitive disorder

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor α

IL:

Interleukin

IFN:

Interferon

DAMP:

Damage-associated molecular pattern

HMGB1:

High mobility group box 1

BMDMs:

Bone marrow-derived monocytes

TLR:

Toll-like receptor

NF-κB:

Nuclear factor-kappa B

MCP-1:

Monocyte chemotactic protein-1

MIP:

Macrophage inflammatory protein

NVU:

Neurovascular unit

CNS:

Central nervous system

BBB:

Blood–brain barrier

CSF:

Cerebrospinal fluid

BCB:

Blood-cerebrospinal fluid barrier

CP:

Choroid plexus

CVO:

Circumventricular organ

ECs:

Endothelial cells

CCL2:

C–C motif chemokine ligand 2

NSAIDs:

Non-steroidal anti-inflammatory drugs

DEX:

Dexmedetomidine

References

  1. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery 2018. Anesthesiology. 2018;129:872–9. https://doi.org/10.1097/ALN.0000000000002334.

    Article  CAS  PubMed  Google Scholar 

  2. Edwards ML, Bause GS. From dental to mental institutions: an american dentist and a british psychiatrist highlight insanity following nitrous-oxide administration. J Anesth Hist. 2018;4:133–4. https://doi.org/10.1016/j.janh.2018.02.002.

    Article  PubMed  Google Scholar 

  3. Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269:259–63. https://doi.org/10.1016/s0140-6736(55)92689-1.

    Article  CAS  PubMed  Google Scholar 

  4. Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011;112:1179–85. https://doi.org/10.1213/ANE.0b013e318215217e.

    Article  PubMed  Google Scholar 

  5. Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, et al. The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimers Dement. 2016;12:766–75. https://doi.org/10.1016/j.jalz.2016.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351:857–61. https://doi.org/10.1016/s0140-6736(97)07382-0.

    Article  CAS  PubMed  Google Scholar 

  7. Androsova G, Krause R, Winterer G, Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci. 2015;7:112. https://doi.org/10.3389/fnagi.2015.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108:18–30. https://doi.org/10.1097/01.anes.0000296071.19434.1e.

    Article  PubMed  Google Scholar 

  9. Price CC, Garvan CW, Monk TG. Type and severity of cognitive decline in older adults after noncardiac surgery. Anesthesiology. 2008;108:8.

    Article  PubMed  Google Scholar 

  10. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110:548–55. https://doi.org/10.1097/ALN.0b013e318195b569.

    Article  PubMed  Google Scholar 

  11. Pluvinage JV, Wyss-Coray T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat Rev Neurosci. 2020;21:93–102. https://doi.org/10.1038/s41583-019-0255-9.

    Article  CAS  PubMed  Google Scholar 

  12. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–38. https://doi.org/10.1016/j.pharmthera.2011.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56. https://doi.org/10.1038/nrn2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65:304–12. https://doi.org/10.1016/j.biopsych.2008.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gisondi P, Sala F, Alessandrini F, Avesani V, Zoccatelli G, Beltramello A, et al. Mild cognitive impairment in patients with moderate to severe chronic plaque psoriasis. Dermatology. 2014;228:78–85. https://doi.org/10.1159/000357220.

    Article  PubMed  Google Scholar 

  16. Sung CE, Huang RY, Cheng WC, Kao TW, Chen WL. Association between periodontitis and cognitive impairment: Analysis of national health and nutrition examination survey (NHANES) III. J Clin Periodontol. 2019;46:790–8. https://doi.org/10.1111/jcpe.13155.

    Article  PubMed  Google Scholar 

  17. Xue L, Zou X, Yang XQ, Peng F, Yu DK, Du JR. Chronic periodontitis induces microbiota-gut-brain axis disorders and cognitive impairment in mice. Exp Neurol. 2020;326:113176. https://doi.org/10.1016/j.expneurol.2020.113176.

    Article  CAS  PubMed  Google Scholar 

  18. Yamanaka D, Kawano T, Nishigaki A, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, et al. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J Anesth. 2017;31:25–35. https://doi.org/10.1007/s00540-016-2264-4.

    Article  PubMed  Google Scholar 

  19. Labrenz F, Wrede K, Forsting M, Engler H, Schedlowski M, Elsenbruch S, et al. Alterations in functional connectivity of resting state networks during experimental endotoxemia - An exploratory study in healthy men. Brain Behav Immun. 2016;54:17–26. https://doi.org/10.1016/j.bbi.2015.11.010.

    Article  PubMed  Google Scholar 

  20. Biesmans S, Bouwknecht JA, Ver Donck L, Langlois X, Acton PD, De Haes P, et al. Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice. Biomed Res Int. 2015;2015:716920. https://doi.org/10.1155/2015/716920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song L, Quan X, Su L, Wang K, Wang H, Wu L, et al. Inflammation and behavioral symptoms in preoperational glioma patients: Is depression, anxiety, and cognitive impairment related to markers of systemic inflammation? Brain Behav. 2020;10: e01771. https://doi.org/10.1002/brb3.1771.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Myint AM, Schwarz MJ, Steinbusch HW, Leonard BE. Neuropsychiatric disorders related to interferon and interleukins treatment. Metab Brain Dis. 2009;24:55–68. https://doi.org/10.1007/s11011-008-9114-5.

    Article  CAS  PubMed  Google Scholar 

  23. van den Boogaard M, Kox M, Quinn KL, van Achterberg T, van der Hoeven JG, Schoonhoven L, et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit Care. 2011;15:R297. https://doi.org/10.1186/cc10598.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mooijaart SP, Sattar N, Trompet S, Lucke J, Stott DJ, Ford I, et al. Circulating interleukin-6 concentration and cognitive decline in old age: the PROSPER study. J Intern Med. 2013;274:77–85. https://doi.org/10.1111/joim.12052.

    Article  CAS  PubMed  Google Scholar 

  25. Serantes R, Arnalich F, Figueroa M, Salinas M, Andres-Mateos E, Codoceo R, et al. Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem. 2006;281:14632–43. https://doi.org/10.1074/jbc.M512489200.

    Article  CAS  PubMed  Google Scholar 

  26. Riera Romo M, Perez-Martinez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology. 2016;148:125–39. https://doi.org/10.1111/imm.12597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7. https://doi.org/10.1038/nature08780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62. https://doi.org/10.1146/annurev-immunol-030409-101323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42. https://doi.org/10.1038/nri1594.

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Irwin MG, Wong GTC, Chang RCC. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J Neuroinflammation. 2018;15:147. https://doi.org/10.1186/s12974-018-1163-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hovens IB, Schoemaker RG, van der Zee EA, Heineman E, Nyakas C, van Leeuwen BL. Surgery-induced behavioral changes in aged rats. Exp Gerontol. 2013;48:1204–11. https://doi.org/10.1016/j.exger.2013.07.011.

    Article  PubMed  Google Scholar 

  32. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70:986–95. https://doi.org/10.1002/ana.22664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG. Prior infection exacerbates postoperative cognitive dysfunction in aged rats. Am J Physiol Regul Integr Comp Physiol. 2015;309:R148-59. https://doi.org/10.1152/ajpregu.00002.2015.

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Li Z, Zuo YX. Nerve blockage attenuates postoperative inflammation in hippocampus of young rat model with surgical trauma. Mediators Inflamm. 2015;2015:460125. https://doi.org/10.1155/2015/460125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong M, Wang G, Li G, Liu J, Sun P, Xu L, et al. Dysfunction of inflammation-resolving pathways is associated with postoperative cognitive decline in elderly mice. Behav Brain Res. 2020;386:112538. https://doi.org/10.1016/j.bbr.2020.112538.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Tan H, Jiang W, Zuo Z. The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats. J Neuroimmune Pharmacol. 2015;10:179–89. https://doi.org/10.1007/s11481-014-9580-y.

    Article  PubMed  Google Scholar 

  37. Hirsch J, Vacas S, Terrando N, Yuan M, Sands LP, Kramer J, et al. Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery. J Neuroinflammation. 2016;13:211. https://doi.org/10.1186/s12974-016-0681-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Helmy SA, Wahby MA, El-Nawaway M. The effect of anaesthesia and surgery on plasma cytokine production. Anaesthesia. 1999;54:733–8. https://doi.org/10.1046/j.1365-2044.1999.00947.x.

    Article  CAS  PubMed  Google Scholar 

  39. Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020;21:1319–26. https://doi.org/10.1038/s41590-020-00812-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thordardottir S, Vikingsdottir T, Bjarnadottir H, Jonsson H Jr, Gudbjornsson B. Activation of complement following total hip replacement. Scand J Immunol. 2016;83:219–24. https://doi.org/10.1111/sji.12411.

    Article  CAS  PubMed  Google Scholar 

  41. Hoedemaekers C, van Deuren M, Sprong T, Pickkers P, Mollnes TE, Klasen I, et al. The complement system is activated in a biphasic pattern after coronary artery bypass grafting. Ann Thorac Surg. 2010;89:710–6. https://doi.org/10.1016/j.athoracsur.2009.11.049.

    Article  PubMed  Google Scholar 

  42. Yuki K, Eckenhoff RG. Mechanisms of the immunological effects of volatile anesthetics: a review. Anesth Analg. 2016;123:326–35. https://doi.org/10.1213/ANE.0000000000001403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stollings LM, Jia LJ, Tang P, Dou H, Lu B, Xu Y. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125:399–411. https://doi.org/10.1097/ALN.0000000000001195.

    Article  CAS  PubMed  Google Scholar 

  44. Whitaker EE, Christofi FL, Quinn KM, Wiemann BZ, Xia JC, Tobias JD, et al. Selective induction of IL-1beta after a brief isoflurane anesthetic in children undergoing MRI examination. J Anesth. 2017;31:219–24. https://doi.org/10.1007/s00540-016-2294-y.

    Article  PubMed  Google Scholar 

  45. Kallioinen M, Scheinin A, Maksimow M, Langsjo J, Kaisti K, Takala R, et al. The influence of dexmedetomidine and propofol on circulating cytokine levels in healthy subjects. BMC Anesthesiol. 2019;19:222. https://doi.org/10.1186/s12871-019-0895-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deiner S, Baxter MG, Mincer JS, Sano M, Hall J, Mohammed I, et al. Human plasma biomarker responses to inhalational general anaesthesia without surgery. Br J Anaesth. 2020. https://doi.org/10.1016/j.bja.2020.04.085.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68:360–8. https://doi.org/10.1002/ana.22082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Terrando N, Yang T, Wang X, Fang J, Cao M, Andersson U, et al. Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats. Front Immunol. 2016;7:441. https://doi.org/10.3389/fimmu.2016.00441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li RL, Zhang ZZ, Peng M, Wu Y, Zhang JJ, Wang CY, et al. Postoperative impairment of cognitive function in old mice: a possible role for neuroinflammation mediated by HMGB1, S100B, and RAGE. J Surg Res. 2013;185:815–24. https://doi.org/10.1016/j.jss.2013.06.043.

    Article  CAS  PubMed  Google Scholar 

  50. Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M, et al. HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med. 2012;18:930–7. https://doi.org/10.2119/molmed.2012.00195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He HJ, Wang Y, Le Y, Duan KM, Yan XB, Liao Q, et al. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci Ther. 2012;18:994–1002. https://doi.org/10.1111/cns.12018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin GX, Wang T, Chen MH, Hu ZH, Ouyang W. Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol Scand. 2014;58:668–74. https://doi.org/10.1111/aas.12320.

    Article  CAS  PubMed  Google Scholar 

  53. Forsberg A, Cervenka S, Jonsson Fagerlund M, Rasmussen LS, Zetterberg H, Erlandsson Harris H, et al. The immune response of the human brain to abdominal surgery. Ann Neurol. 2017;81:572–82. https://doi.org/10.1002/ana.24909.

    Article  CAS  PubMed  Google Scholar 

  54. Hudetz JA, Gandhi SD, Iqbal Z, Patterson KM, Pagel PS. Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth. 2011;25:1–9. https://doi.org/10.1007/s00540-010-1042-y.

    Article  PubMed  Google Scholar 

  55. Ji MH, Yuan HM, Zhang GF, Li XM, Dong L, Li WY, et al. Changes in plasma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total hip-replacement surgery. J Anesth. 2013;27:236–42. https://doi.org/10.1007/s00540-012-1506-3.

    Article  PubMed  Google Scholar 

  56. Qiao Y, Feng H, Zhao T, Yan H, Zhang H, Zhao X. Postoperative cognitive dysfunction after inhalational anesthesia in elderly patients undergoing major surgery: the influence of anesthetic technique, cerebral injury and systemic inflammation. BMC Anesthesiol. 2015;15:154. https://doi.org/10.1186/s12871-015-0130-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Casey CP, Lindroth H, Mohanty R, Farahbakhsh Z, Ballweg T, Twadell S, et al. Postoperative delirium is associated with increased plasma neurofilament light. Brain. 2020;143:47–54. https://doi.org/10.1093/brain/awz354.

    Article  PubMed  Google Scholar 

  58. Sun L, Xie K, Zhang C, Song R, Zhang H. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats. Neuroreport. 2014;25:718–24. https://doi.org/10.1097/WNR.0000000000000181.

    Article  CAS  PubMed  Google Scholar 

  59. He Z, Xu N, Qi S. Remote ischemic preconditioning improves the cognitive function of elderly patients following colon surgery: A randomized clinical trial. Medicine (Baltimore). 2017;96: e6719. https://doi.org/10.1097/MD.0000000000006719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu J, Feng X, Valdearcos M, Lutrin D, Uchida Y, Koliwad SK, et al. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br J Anaesth. 2018;120:537–45. https://doi.org/10.1016/j.bja.2017.11.096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 2010;107:20518–22. https://doi.org/10.1073/pnas.1014557107.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xiong C, Liu J, Lin D, Zhang J, Terrando N, Wu A. Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflammation. 2018;15:254. https://doi.org/10.1186/s12974-018-1292-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sahoo AK, Panda N, Sabharwal P, Luthra A, Balu M, Chauhan R, et al. Effect of anesthetic agents on cognitive function and peripheral inflammatory biomarkers in young patients undergoing surgery for spine disorders. Asian J Neurosurg. 2019;14:1095–105. https://doi.org/10.4103/ajns.AJNS_173_19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99:21–78. https://doi.org/10.1152/physrev.00050.2017.

    Article  CAS  PubMed  Google Scholar 

  65. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53. https://doi.org/10.1038/nrn1824.

    Article  CAS  PubMed  Google Scholar 

  66. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61. https://doi.org/10.1038/nature09522.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163:1064–78. https://doi.org/10.1016/j.cell.2015.10.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25:270–6. https://doi.org/10.1038/s41591-018-0297-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, et al. Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front Immunol. 2017;8:902. https://doi.org/10.3389/fimmu.2017.00902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang T, Xu G, Newton PT, Chagin AS, Mkrtchian S, Carlstrom M, et al. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br J Anaesth. 2019;122:350–60. https://doi.org/10.1016/j.bja.2018.10.062.

    Article  CAS  PubMed  Google Scholar 

  71. Ni P, Dong H, Wang Y, Zhou Q, Xu M, Qian Y, et al. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation. 2018;15:332. https://doi.org/10.1186/s12974-018-1374-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Degos V, Vacas S, Han Z, van Rooijen N, Gressens P, Su H, et al. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology. 2013;118:527–36. https://doi.org/10.1097/ALN.0b013e3182834d94.

    Article  CAS  PubMed  Google Scholar 

  73. Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33:7–22. https://doi.org/10.1002/embj.201386609.

    Article  CAS  PubMed  Google Scholar 

  74. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, et al. IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 2013;136:3427–40. https://doi.org/10.1093/brain/awt259.

    Article  PubMed  Google Scholar 

  75. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6. https://doi.org/10.1016/j.bbi.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  76. Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci USA. 2013;110:2264–9. https://doi.org/10.1073/pnas.1211270110.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56:1695–716. https://doi.org/10.1016/j.addr.2004.07.005.

    Article  CAS  PubMed  Google Scholar 

  78. Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol. 2011;39:186–212. https://doi.org/10.1177/0192623310394214.

    Article  PubMed  Google Scholar 

  79. Neman J, Chen TC. The Choroid Plexus and Cerebrospinal Fluid: Emerging Roles in CNS Development, Maintenance, and Disease Progression. Academic Press.2015;1st edition:155–65.

  80. Kaur C, Rathnasamy G, Ling EA. The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol. 2016;75:198–213. https://doi.org/10.1093/jnen/nlv030.

    Article  CAS  PubMed  Google Scholar 

  81. Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. Biochim Biophys Acta Biomembr. 2020;1862:183430. https://doi.org/10.1016/j.bbamem.2020.183430.

    Article  CAS  PubMed  Google Scholar 

  82. Ott BR, Jones RN, Daiello LA, de la Monte SM, Stopa EG, Johanson CE, et al. Blood-cerebrospinal fluid barrier gradients in mild cognitive impairment and Alzheimer’s disease: relationship to inflammatory cytokines and chemokines. Front Aging Neurosci. 2018;10:245. https://doi.org/10.3389/fnagi.2018.00245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldim MP, Danielski LG, Rodrigues JF, Joaquim L, Garbossa L, de Oliveira Junior AN, et al. Oxidative stress in the choroid plexus contributes to blood-cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res. 2019;123:19–24. https://doi.org/10.1016/j.mvr.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  84. Mesquita SD, Ferreira AC, Gao F, Coppola G, Geschwind DH, Sousa JC, et al. The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2015;49:280–92. https://doi.org/10.1016/j.bbi.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  85. Zanotto C, Simao F, Gasparin MS, Biasibetti R, Tortorelli LS, Nardin P, et al. Exendin-4 reverses biochemical and functional alterations in the blood-brain and blood-CSF barriers in diabetic rats. Mol Neurobiol. 2017;54:2154–66. https://doi.org/10.1007/s12035-016-9798-1.

    Article  CAS  PubMed  Google Scholar 

  86. Hov KR, Berg JP, Frihagen F, Raeder J, Hall R, Wyller TB, et al. Blood-cerebrospinal fluid barrier integrity in delirium determined by Q-albumin. Dement Geriatr Cogn Disord. 2016;41:192–8. https://doi.org/10.1159/000443789.

    Article  CAS  PubMed  Google Scholar 

  87. Benarroch EE. Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology. 2011;77:1198–204. https://doi.org/10.1212/WNL.0b013e31822f04a0.

    Article  PubMed  Google Scholar 

  88. Wei SG, Zhang ZH, Beltz TG, Yu Y, Johnson AK, Felder RB. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension. 2013;62:118–25. https://doi.org/10.1161/HYPERTENSIONAHA.113.01404.

    Article  CAS  PubMed  Google Scholar 

  89. Korim WS, Elsaafien K, Basser JR, Setiadi A, May CN, Yao ST. In renovascular hypertension, TNF-alpha type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure. Cardiovasc Res. 2019;115:1092–101. https://doi.org/10.1093/cvr/cvy268.

    Article  CAS  PubMed  Google Scholar 

  90. Okamoto A, Fujii R, Yoshimura R, Miyata S. Transcytosis of tanycytes in the circumventricular organs of adult mouse brain. Neurosci Lett. 2022;779:136633. https://doi.org/10.1016/j.neulet.2022.136633.

    Article  CAS  PubMed  Google Scholar 

  91. Jeong JK, Dow SA, Young CN. Sensory circumventricular organs, neuroendocrine control, and metabolic regulation. Metabolites. 2021. https://doi.org/10.3390/metabo11080494.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85:1–17. https://doi.org/10.1016/S1566-0702(00)00215-0.

    Article  CAS  PubMed  Google Scholar 

  93. Dilger RN, Johnson RW. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol. 2008;84:932–9. https://doi.org/10.1189/jlb.0208108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maier SF. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav Immun. 2003;17:69–85. https://doi.org/10.1016/s0889-1591(03)00032-1.

    Article  CAS  PubMed  Google Scholar 

  95. Zielinski MR, Dunbrasky DL, Taishi P, Souza G, Krueger JM. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-alpha and lipopolysaccharide in mice. Sleep. 2013;36(1227–38):38A. https://doi.org/10.5665/sleep.2892.

    Article  Google Scholar 

  96. Luheshi GN, Bluthe RM, Rushforth D, Mulcahy N, Konsman JP, Goldbach M, et al. Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Auton Neurosci. 2000;85:127–32. https://doi.org/10.1016/S1566-0702(00)00231-9.

    Article  CAS  PubMed  Google Scholar 

  97. Kubota T, Fang J, Guan Z, Brown RA, Krueger JM. Vagotomy attenuates tumor necrosis factor-alpha-induced sleep and EEG delta-activity in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1213-20. https://doi.org/10.1152/ajpregu.2001.280.4.R1213.

    Article  CAS  PubMed  Google Scholar 

  98. Romanovsky AA, Ivanov AI, Szekely M. Neural route of pyrogen signaling to the brain. Clin Infect Dis. 2000;31(Suppl 5):S162-7. https://doi.org/10.1086/317515.

    Article  CAS  PubMed  Google Scholar 

  99. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021. https://doi.org/10.1126/science.abf7844.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Forstera B, Zhao S, et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci. 2019;22:317–27. https://doi.org/10.1038/s41593-018-0301-3.

    Article  CAS  PubMed  Google Scholar 

  101. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018;21:1209–17. https://doi.org/10.1038/s41593-018-0213-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yao H, Price TT, Cantelli G, Ngo B, Warner MJ, Olivere L, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60. https://doi.org/10.1038/s41586-018-0342-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Galea I, Perry VH. The blood-brain interface: a culture change. Brain Behav Immun. 2018;68:11–6. https://doi.org/10.1016/j.bbi.2017.10.014.

    Article  PubMed  Google Scholar 

  104. Smyth LCD, Rustenhoven J, Park TI, Schweder P, Jansson D, Heppner PA, et al. Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation. 2018;15:138. https://doi.org/10.1186/s12974-018-1167-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. D’Mello C, Riazi K, Le T, Stevens KM, Wang A, McKay DM, et al. P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci. 2013;33:14878–88. https://doi.org/10.1523/JNEUROSCI.1329-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity. 2019;50:764–6. https://doi.org/10.1016/j.immuni.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  107. Erikson K, Tuominen H, Vakkala M, Liisanantti JH, Karttunen T, Syrjala H, et al. Brain tight junction protein expression in sepsis in an autopsy series. Crit Care. 2020;24:385. https://doi.org/10.1186/s13054-020-03101-3.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Konsman JP, Vigues S, Mackerlova L, Bristow A, Blomqvist A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol. 2004;472:113–29. https://doi.org/10.1002/cne.20052.

    Article  PubMed  Google Scholar 

  109. Engblom D, Ek M, Saha S, Ericsson-Dahlstrand A, Jakobsson PJ, Blomqvist A. Prostaglandins as inflammatory messengers across the blood-brain barrier. J Mol Med (Berl). 2002;80:5–15. https://doi.org/10.1007/s00109-001-0289-z.

    Article  CAS  PubMed  Google Scholar 

  110. Propson NE, Roy ER, Litvinchuk A, Kohl J, Zheng H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Invest. 2021. https://doi.org/10.1172/JCI140966.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bhatia K, Ahmad S, Kindelin A, Ducruet AF. Complement C3a receptor-mediated vascular dysfunction: a complex interplay between aging and neurodegeneration. J Clin Invest. 2021. https://doi.org/10.1172/JCI144348.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wu F, Liu L, Zhou H. Endothelial cell activation in central nervous system inflammation. J Leukoc Biol. 2017;101:1119–32. https://doi.org/10.1189/jlb.3RU0816-352RR.

    Article  CAS  PubMed  Google Scholar 

  113. Vizcaychipi MP, Watts HR, O’Dea KP, Lloyd DG, Penn JW, Wan Y, et al. The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann Surg. 2014;259:1235–44. https://doi.org/10.1097/SLA.0000000000000257.

    Article  PubMed  Google Scholar 

  114. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14:1398–405. https://doi.org/10.1038/nn.2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, et al. PDGFRbeta Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron. 2018. https://doi.org/10.1016/j.neuron.2018.08.030.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brown GC, Vilalta A. How microglia kill neurons. Brain Res. 2015;1628:288–97. https://doi.org/10.1016/j.brainres.2015.08.031.

    Article  CAS  PubMed  Google Scholar 

  117. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med. 2018;24:326–37. https://doi.org/10.1038/nm.4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, et al. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104. https://doi.org/10.1186/1742-2094-11-104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Greter M, Lelios I, Croxford AL. Microglia versus myeloid cell nomenclature during brain inflammation. Front Immunol. 2015;6:249. https://doi.org/10.3389/fimmu.2015.00249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol. 2020;184:101720. https://doi.org/10.1016/j.pneurobio.2019.101720.

    Article  CAS  PubMed  Google Scholar 

  121. Davoust N, Vuaillat C, Androdias G, Nataf S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 2008;29:227–34. https://doi.org/10.1016/j.it.2008.01.010.

    Article  CAS  PubMed  Google Scholar 

  122. D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci. 2009;29:2089–102. https://doi.org/10.1523/JNEUROSCI.3567-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang T, Zhu H, Hou Y, Gu W, Wu H, Luan Y, et al. Galantamine reversed early postoperative cognitive deficit via alleviating inflammation and enhancing synaptic transmission in mouse hippocampus. Eur J Pharmacol. 2019;846:63–72. https://doi.org/10.1016/j.ejphar.2018.12.034.

    Article  CAS  PubMed  Google Scholar 

  124. Buvanendran A, Kroin JS, Berger RA, Hallab NJ, Saha C, Negrescu C, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006;104:403–10. https://doi.org/10.1097/00000542-200603000-00005.

    Article  CAS  PubMed  Google Scholar 

  125. Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40:140–55. https://doi.org/10.1002/glia.10161.

    Article  PubMed  Google Scholar 

  126. Wang HL, Liu H, Xue ZG, Liao QW, Fang H. Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation. J Cell Mol Med. 2016;20:1632–9. https://doi.org/10.1111/jcmm.12854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight. 2017;2: e91229. https://doi.org/10.1172/jci.insight.91229.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhou X, Lu J, Wu T, Jiang X, Tian W, Dai W, et al. Multiple anesthesia/surgery cannot impair reference memory in adult mice. Mediators Inflamm. 2020;2020:3736912. https://doi.org/10.1155/2020/3736912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang HL, Ma RH, Fang H, Xue ZG, Liao QW. Impaired spatial learning memory after isoflurane anesthesia or appendectomy in aged mice is associated with microglia activation. J Cell Death. 2015;8:9–19. https://doi.org/10.4137/JCD.S30596.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. 2022;21:339–58. https://doi.org/10.1038/s41573-022-00390-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhou Y, Wu X, Ye L, Bai Y, Zhang H, Xuan Z, et al. Edaravone at high concentrations attenuates cognitive dysfunctions induced by abdominal surgery under general anesthesia in aged mice. Metab Brain Dis. 2020;35:373–83. https://doi.org/10.1007/s11011-019-00532-y.

    Article  CAS  PubMed  Google Scholar 

  132. Quiroz-Padilla MF, Guillazo-Blanch G, Sanchez MY, Dominguez-Sanchez MA, Gomez RM. Effects of excitotoxic lesion with inhaled anesthetics on nervous system cells of rodents. Curr Pharm Des. 2018;24:4–14. https://doi.org/10.2174/1381612823666170817125015.

    Article  CAS  PubMed  Google Scholar 

  133. Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106:436–43. https://doi.org/10.1097/00000542-200703000-00007.

    Article  PubMed  Google Scholar 

  134. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7. https://doi.org/10.1038/nature21029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119:37–53. https://doi.org/10.1007/s00401-009-0601-5.

    Article  PubMed  Google Scholar 

  136. Maes M, Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Vojdani A. Reactivity to neural tissue epitopes, aquaporin 4 and heat shock protein 60 is associated with activated immune-inflammatory pathways and the onset of delirium following hip fracture surgery. Eur Geriatr Med. 2023;14:99–112. https://doi.org/10.1007/s41999-022-00729-y.

    Article  PubMed  Google Scholar 

  137. Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the oligodendrocyte lineage varies according to the systemic inflammatory stimulus in animal models that mimic the encephalopathy of prematurity. Front Physiol. 2022;13:881674. https://doi.org/10.3389/fphys.2022.881674.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Farrar WL, Kilian PL, Ruff MR, Hill JM, Pert CB. Visualization and characterization of interleukin 1 receptors in brain. J Immunol. 1987;139:459–63.

    Article  CAS  PubMed  Google Scholar 

  139. Prieto GA, Snigdha S, Baglietto-Vargas D, Smith ED, Berchtold NC, Tong L, et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1beta in the aged hippocampus. Proc Natl Acad Sci USA. 2015;112:E5078-87. https://doi.org/10.1073/pnas.1514486112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, et al. Memory deficits induced by inflammation are regulated by alpha5-subunit-containing GABAA receptors. Cell Rep. 2012;2:488–96. https://doi.org/10.1016/j.celrep.2012.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang L, Lindholm K, Konishi Y, Li R, Shen Y. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci. 2002;22:3025–32. https://doi.org/10.1523/JNEUROSCI.22-08-03025.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci. 2004;24:1760–71. https://doi.org/10.1523/JNEUROSCI.4580-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Subramaniyan S, Terrando N. Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg. 2019;128:781–8. https://doi.org/10.1213/ANE.0000000000004053.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kawano T, Yamanaka D, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, Nishigaki A, et al. Involvement of acute neuroinflammation in postoperative delirium-like cognitive deficits in rats. J Anesth. 2018;32:506–17. https://doi.org/10.1007/s00540-018-2504-x.

    Article  PubMed  Google Scholar 

  145. Danielson M, Wiklund A, Granath F, Blennow K, Mkrtchian S, Nellgard B, et al. Neuroinflammatory markers associate with cognitive decline after major surgery: Findings of an explorative study. Ann Neurol. 2020;87:370–82. https://doi.org/10.1002/ana.25678.

    Article  PubMed  Google Scholar 

  146. Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci. 2015;35:4942–52. https://doi.org/10.1523/JNEUROSCI.4485-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci. 2020;21:139–52. https://doi.org/10.1038/s41583-020-0263-9.

    Article  CAS  PubMed  Google Scholar 

  148. Li D, Chen M, Meng T, Fei J. Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J Neuroinflammation. 2020;17:109. https://doi.org/10.1186/s12974-020-01799-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yang W, Kong LS, Zhu XX, Wang RX, Liu Y, Chen LR. Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98: e15383. https://doi.org/10.1097/MD.0000000000015383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lei D, Sha Y, Wen S, Xie S, Liu L, Han C. Dexmedetomidine may reduce IL-6 level and the risk of postoperative cognitive dysfunction in patients after surgery: a meta-analysis. Dose Response. 2020;18:1559325820902345. https://doi.org/10.1177/1559325820902345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang JM, Lv ZT, Zhang B, Jiang WX, Nie MB. Intravenous parecoxib for early postoperative cognitive dysfunction in elderly patients: evidence from a meta-analysis. Expert Rev Clin Pharmacol. 2020;13:451–60. https://doi.org/10.1080/17512433.2020.1732815.

    Article  CAS  PubMed  Google Scholar 

  152. Li B, Li Y, Tian S, Wang H, Wu H, Zhang A, et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep. 2015;5:12342. https://doi.org/10.1038/srep12342.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mei B, Xu G, Han W, Lu X, Liu R, Cheng X, et al. The benefit of dexmedetomidine on postoperative cognitive function is unrelated to the modulation on peripheral inflammation: a single-center, prospective. Randomized Study Clin J Pain. 2020;36:88–95. https://doi.org/10.1097/AJP.0000000000000779.

    Article  PubMed  Google Scholar 

  154. Glumac S, Kardum G, Sodic L, Supe-Domic D, Karanovic N. Effects of dexamethasone on early cognitive decline after cardiac surgery: a randomised controlled trial. Eur J Anaesthesiol. 2017;34:776–84. https://doi.org/10.1097/EJA.0000000000000647.

    Article  CAS  PubMed  Google Scholar 

  155. Ottens TH, Dieleman JM, Sauer AM, Peelen LM, Nierich AP, de Groot WJ, et al. Effects of dexamethasone on cognitive decline after cardiac surgery: a randomized clinical trial. Anesthesiology. 2014;121:492–500. https://doi.org/10.1097/ALN.0000000000000336.

    Article  CAS  PubMed  Google Scholar 

  156. Kluger MT, Skarin M, Collier J, Rice DA, McNair PJ, Seow MY, et al. Steroids to reduce the impact on delirium (STRIDE): a double-blind, randomised, placebo-controlled feasibility trial of pre-operative dexamethasone in people with hip fracture. Anaesthesia. 2021;76:1031–41. https://doi.org/10.1111/anae.15465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported partly by the National Natural Science Foundation of China (No. 82270997).

Author information

Authors and Affiliations

Authors

Contributions

SJ and WF conceived the idea of this review. SJ, HY and WF performed literature searching and drafted the manuscript. WF created the figures. WF and FH critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenguo Fan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Yang, H., Huang, F. et al. Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders. Inflamm. Res. 72, 1895–1907 (2023). https://doi.org/10.1007/s00011-023-01792-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01792-2

Keywords

Navigation