Skip to main content

Advertisement

Log in

Inhibition of gp130 alleviates LPS-induced lung injury by attenuating apoptosis and inflammation through JAK1/STAT3 signaling pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and objective

Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a life-threatening respiratory disease. Gp130 is a signal transduction receptor that participates in a variety of essential biological processes. The biological function of gp130 in ALI/ARDS is unclear. This study aims to investigate the roles and potential mechanisms of gp130 in lung injury induced by lipopolysaccharide (LPS).

Methods

The ALI/ARDS mouse model was established using intratracheal LPS administration. Hematoxylin and eosin staining and bronchoalveolar lavage fluid analysis were used to evaluate the degree of lung injury. Cell apoptosis was assessed by TUNEL staining, flow cytometry, and western blot. Then the expression of gp130, IL-6, IL-10, TNF-α, and the JAK1/STAT3 signaling pathway-related proteins was assessed by RT-PCR, western blot, and immunohistochemistry.

Results

The expression of gp130 increased after 24 h of LPS treatment. Inhibiting gp130 improved inflammatory infiltration and alveolar collapsed, decreased IL-6 and TNF-α levels, raised IL-10 levels, and decreased cell apoptosis in LPS-induced mice. Meanwhile, suppressing gp130 reduced the inflammatory response and cell apoptosis in LPS-induced Beas-2B cells. Furthermore, p-JAK1 and p-STAT3 expressions were elevated after LPS stimulation and decreased following gp130 inhibition, suggesting that gp130 may regulate the JAK1/STAT3 signaling pathway in LPS-induced mice and Beas-2B cells.

Conclusion

The findings suggest that gp130 regulates the inflammatory response and cell apoptosis through the JAK1/STAT3 signaling pathway, thereby mitigating LPS-induced lung injury. Gp130 may be a potential therapeutic target for ALI/ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

CNTF:

Ciliary neurotrophic factor

DMSO:

Dimethyl sulfoxide

DAPI:

4′,6-Diamidino-2-phenylindole

FBS:

Fetal bovine serum

Gp130:

Glycoprotein 130

HE:

Hematoxylin and eosin

LPS:

Lipopolysaccharide

LIF:

Leukemia inhibitory factor

PBS:

Phosphate buffer solution

PMSF:

Phenylmethyl sulfonyl fluoride

PVDF:

Polyvinylidene fluoride

RT:

Room temperature

SPF:

Specific pathogen-free

TUNEL:

TdT-mediated dUTP nick end labeling

References

  1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  2. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18. https://doi.org/10.1038/s41572-019-0069-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pham T, Rubenfeld GD. Fifty years of research in ARDS. the epidemiology of acute respiratory distress syndrome A 50th birthday review. Am J Respir Crit Care Med. 2017;195:860–70.

    Article  PubMed  Google Scholar 

  4. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78:1233–61. https://doi.org/10.1007/s00018-020-03656-y.

    Article  CAS  PubMed  Google Scholar 

  5. Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol. 2017;12:311–24. https://doi.org/10.1016/j.redox.2017.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a028415.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Feng J, Song S, Li H, Yang H, Zhou B, et al. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation. 2020;142:967–82. https://doi.org/10.1161/circulationaha.119.044484.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt-Arras D, Galun E, Rose-John S. The two facets of gp130 signalling in liver tumorigenesis. Semin Immunopathol. 2021;43:609–24. https://doi.org/10.1007/s00281-021-00861-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silver JS, Hunter CA. gp130 at the nexus of inflammation, autoimmunity, and cancer. J Leukoc Biol. 2010;88:1145–56. https://doi.org/10.1189/jlb.0410217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210.

    Article  CAS  PubMed  Google Scholar 

  11. Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–5. https://doi.org/10.1126/science.277.5332.1630.

    Article  CAS  PubMed  Google Scholar 

  12. Ling L, Zhang SH, Zhi LD, Li H, Wen QK, Li G, et al. MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomed Pharmacother. 2018;104:411–9. https://doi.org/10.1016/j.biopha.2018.05.042.

    Article  CAS  PubMed  Google Scholar 

  13. Hu L, Liu R, Zhang L. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors. Int Immunopharmacol. 2022;111:109095.

    Article  CAS  PubMed  Google Scholar 

  14. Georas SN, Donohue P, Connolly M, Wechsler ME. JAK inhibitors for asthma. J Allergy Clin Immunol. 2021;148:953–63. https://doi.org/10.1016/j.jaci.2021.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Hu Y, Song B, Xiong Y, Wang J, Chen D. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res. 2021;70:753–64. https://doi.org/10.1007/s00011-021-01482-x.

    Article  CAS  PubMed  Google Scholar 

  16. Kida H, Mucenski ML, Thitoff AR, Le Cras TD, Park KS, Ikegami M, et al. GP130-STAT3 regulates epithelial cell migration and is required for repair of the bronchiolar epithelium. Am J Pathol. 2008;172:1542–54. https://doi.org/10.2353/ajpath.2008.071052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang HH, Duan JX, Liu SK, Xiong JB, Guan XX, Zhong WJ, et al. A COX-2/sEH dual inhibitor PTUPB alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting NLRP3 inflammasome activation. Theranostics. 2020;10:4749–61. https://doi.org/10.7150/thno.43108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kerr NA, de Rivero Vaccari JP, Weaver C, Dietrich WD, Ahmed T, Keane RW. Enoxaparin attenuates acute lung injury and inflammasome activation after traumatic brain injury. J Neurotrauma. 2021;38:646–54. https://doi.org/10.1089/neu.2020.7257.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yadav H, Thompson BT, Gajic O. Fifty years of research in ards is acute respiratory distress syndrome a preventable disease? Am J Respir Crit Care Med. 2017;195:725–36.

    Article  CAS  PubMed  Google Scholar 

  20. Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40:31–9. https://doi.org/10.1055/s-0039-1683996.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brandenberger C, Kling KM, Vital M, Christian M. The role of pulmonary and systemic immunosenescence in acute lung injury. Aging Dis. 2018;9:553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, et al. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW2647 cells and acute lung injury. Oncotarget. 2017;8:68153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32:169–84. https://doi.org/10.1007/s10565-016-9322-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol. 2019;44:101344.

    Article  CAS  PubMed  Google Scholar 

  25. Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir Res. 2020;21:65. https://doi.org/10.1186/s12931-020-1325-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoegl S, Boost KA, Czerwonka H, Dolfen A, Scheiermann P, Muhl H, et al. Inhaled IL-10 reduces biotrauma and mortality in a model of ventilator-induced lung injury. Respir Med. 2009;103:463–70. https://doi.org/10.1016/j.rmed.2008.09.020.

    Article  PubMed  Google Scholar 

  27. Hofstetter C, Flondor M, Hoegl S, Muhl H, Zwissler B. Interleukin-10 aerosol reduces proinflammatory mediators in bronchoalveolar fluid of endotoxemic rat. Crit Care Med. 2005;33:2317–22. https://doi.org/10.1097/01.ccm.0000182815.78568.b2.

    Article  CAS  PubMed  Google Scholar 

  28. Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, et al. Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol. 2008;294:L225–32. https://doi.org/10.1152/ajplung.00370.2007.

    Article  CAS  PubMed  Google Scholar 

  29. Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989;58:573–81. https://doi.org/10.1016/0092-8674(89)90438-8.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A. 1996;93:407–11. https://doi.org/10.1073/pnas.93.1.407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Betz UA, Bloch W, van den Broek M, Yoshida K, Taga T, Kishimoto T, et al. Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects. J Exp Med. 1998;188:1955–65. https://doi.org/10.1084/jem.188.10.1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sander LE, Obermeier F, Dierssen U, Kroy DC, Singh AK, Seidler U, et al. Gp130 signaling promotes development of acute experimental colitis by facilitating early neutrophil/macrophage recruitment and activation. J Immunol. 2008;181:3586–94. https://doi.org/10.4049/jimmunol.181.5.3586.

    Article  CAS  PubMed  Google Scholar 

  33. Greenhill CJ, Gould J, Ernst M, Jarnicki A, Hertzog PJ, Mansell A, et al. LPS hypersensitivity of gp130 mutant mice is independent of elevated haemopoietic TLR4 signaling. Immunol Cell Biol. 2012;90:559–63. https://doi.org/10.1038/icb.2011.56.

    Article  CAS  PubMed  Google Scholar 

  34. Tian WF, Weng P, Sheng Q, Chen JL, Zhang P, Zhang JR, et al. Biliverdin protects the isolated rat lungs from ischemia-reperfusion injury via antioxidative, anti-inflammatory and anti-apoptotic effects. Chin Med J (Engl). 2017;130:859–65. https://doi.org/10.4103/0366-6999.202735.

    Article  CAS  PubMed  Google Scholar 

  35. Bardales RH, Xie SS, Schaefer RF, Hsu SM. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol. 1996;149:845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guinee D Jr, Brambilla E, Fleming M, Hayashi T, Rahn M, Koss M, et al. The potential role of BAX and BCL-2 expression in diffuse alveolar damage. Am J Pathol. 1997;151:999–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu S, Grande F, Garofalo A, Neamati N. Discovery of a novel orally active small-molecule gp130 inhibitor for the treatment of ovarian cancer. Mol Cancer Ther. 2013;12:937–49. https://doi.org/10.1158/1535-7163.Mct-12-1082.

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, Li S, Dong R, Li X. Long noncoding RNA MIR3142HG accelerates lipopolysaccharide-induced acute lung injury via miR-95-5p/JAK2 axis. Hum Cell. 2022;35:856–70. https://doi.org/10.1007/s13577-022-00687-4.

    Article  CAS  PubMed  Google Scholar 

  39. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. https://doi.org/10.1146/annurev-med-051113-024537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song Z, Zhao X, Gao Y, Liu M, Hou M, Jin H, et al. Recombinant human brain natriuretic peptide ameliorates trauma-induced acute lung injury via inhibiting JAK/STAT signaling pathway in rats. J Trauma Acute Care Surg. 2015;78:980–7. https://doi.org/10.1097/ta.0000000000000602.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Sha J, Feng X, Hu X, Chen Y, Li B, et al. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. Int Immunopharmacol. 2019;74:105717.

    Article  CAS  PubMed  Google Scholar 

  42. Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82. https://doi.org/10.1016/j.coi.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  43. Pozios I, Seel NN, Hering NA, Hartmann L, Liu V, Camaj P, et al. Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/gp130/STAT3 signaling. Cell Oncol (Dordr). 2021;44:167–77. https://doi.org/10.1007/s13402-020-00559-9.

    Article  CAS  PubMed  Google Scholar 

  44. Giraldez MD, Carneros D, Garbers C, Rose-John S, Bustos M. New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol. 2021;18:787–803. https://doi.org/10.1038/s41575-021-00473-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant/award number: no. 81873420, no. 82070075).

Author information

Authors and Affiliations

Authors

Contributions

Fan Xu: Conceptualization, Methodology, Writing–original draft, Writing–review & editing. Sijiao Wang: Conceptualization, Methodology. Lijuan Hu: Conceptualization, Visualization. Yali Wang: Methodology, Investigation. Lei Zhu: Conceptualization, Supervision, Writing – review & editing. All authors approve the final version to be submitted.

Corresponding author

Correspondence to Lei Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Anatolii Kubyshkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, S., Wang, Y. et al. Inhibition of gp130 alleviates LPS-induced lung injury by attenuating apoptosis and inflammation through JAK1/STAT3 signaling pathway. Inflamm. Res. 72, 493–507 (2023). https://doi.org/10.1007/s00011-022-01686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01686-9

Keywords

Navigation