Skip to main content
Log in

A20 attenuates pyroptosis and apoptosis in nucleus pulposus cells via promoting mitophagy and stabilizing mitochondrial dynamics

  • Original Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

A20 is an anti-inflammatory molecule in nucleus pulposus (NP) cells. The anti-inflammatory properties of A20 are mainly attributed to its ability to suppress the NF-κB pathway. However, A20 can protect cells from death independently of NF-κB regulation. This study aimed to investigate the effects of A20 on pyroptosis and apoptosis of NP cells induced by lipopolysaccharide (LPS).

Methods

NP cells induced by LPS were used as an in vitro model of the inflammatory environment of the intervertebral disc. Pyroptosis, apoptosis, and mitophagy marker proteins were detected. Then, NP cells were transfected with A20 overexpressed lentivirus or A20-siRNA. Annexin V FITC/PI, Western blotting, and immunofluorescence assays were used to detect the apoptosis, pyroptosis, and mitophagy of NP cells. Furthermore, the expressions of A20, related proteins, and related inflammatory cytokines were detected by western blotting, and ELISA.

Results

Apoptosis and pyroptosis of NP cells increased gradually treated with LPS for 12 h, 24 h, and 48 h. Differently, the level of mitophagy increased first and then decreased, and was the highest at LPS treatment for 12 h. Overexpression or knockdown of A20 in NP cells revealed that A20 attenuated the pyroptosis, apoptosis, and production of inflammatory cytokines of NP cells induced by LPS, while A20 sponsored mitophagy, reduced ROS production and collapse of mitochondrial membrane potential (ΔΨm). Moreover, A20 also promoted mitochondrial dynamic homeostasis and attenuated LPS-induced excessive mitochondrial fission. Excitingly, inhibition of mitophagy attenuated the effect of A20 on the negative regulation of pyroptosis of NP cells induced by LPS. Pyroptosis was accompanied by a large release of inflammatory cytokines. Inhibition of pyroptosis also significantly reduced apoptosis of NP cells. Finally, The mitochondria-targeted active peptide SS-31 inhibited LPS-induced pyroptosis and ROS production in NP cells.

Conclusions

To sum up, A20 attenuates pyroptosis and apoptosis of NP cells via promoting mitophagy and stabilizing mitochondrial dynamics. Besides, A20 reduces LPS-induced NP cell apoptosis by inhibiting NLRP3 inflammasome-mediated pyroptosis. It provides theoretical support for the reduction of functional NP cell loss in the intervertebral disc through the gene-targeted intervention of A20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nishida K, Doita M, Takada T, Shimomura T, Maeno K, Kakutani K, Miyamoto H, Kurosaka M. Biological approach for treatment of degenerative disc diseases. Clin Calcium. 2005;15(3):79–86.

    PubMed  Google Scholar 

  2. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology. 2007;245(1):43–61.

    Article  PubMed  Google Scholar 

  3. Fraser RD, Osti OL, Vernon-Roberts B. Intervertebral disc degeneration. Eur Spine J. 1993;1(4):205–13.

    Article  CAS  PubMed  Google Scholar 

  4. Liao Z, Luo R, Li G, Song Y, Zhan S, Zhao K, Hua W, Zhang Y, Wu X, Yang C. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics. 2019;9(14):4084–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cosamalón-Gan I, Cosamalón-Gan T, Mattos-Piaggio G, Villar-Suárez V, García-Cosamalón J, Vega-Álvarez JA. Inflammation in the intervertebral disc herniation. Neurocirugia (English Edition). 2021;32(1):21–35.

    Article  Google Scholar 

  6. Lin X, Lin Q. MiRNA-495-3p attenuates TNF-α induced apoptosis and inflammation in human nucleus pulposus cells by targeting IL5RA. Inflammation. 2020;43(5):1797–805.

    Article  PubMed  CAS  Google Scholar 

  7. Liu J, Wang S, Zhang Q, Li X, Xu S. Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics Integr Biometal Sci. 2020;12(1):54–64.

    Article  CAS  Google Scholar 

  8. Zhong H, Zhou Z, Guo L, Liu F, Zheng B, Bi S, Tian C. The miR-623/CXCL12 axis inhibits LPS-induced nucleus pulposus cell apoptosis and senescence. Mech Ageing Dev. 2021;194:111417.

    Article  CAS  PubMed  Google Scholar 

  9. Chen ZH, Jin SH, Wang MY, Jin XL, Lv C, Deng YF, Wang JL. Enhanced NLRP3, caspase-1, and IL-1β levels in degenerate human intervertebral disc and their association with the grades of disc degeneration. Anat Rec (Hoboken, NJ: 2007). 2015;298(4):720–6.

    Article  CAS  Google Scholar 

  10. Tang G, Han X, Lin Z, Qian H, Chen B, Zhou C, Chen Y, Jiang W. Propionibacterium acnes accelerates intervertebral disc degeneration by inducing pyroptosis of nucleus pulposus cells via the ROS-NLRP3 pathway. Oxid Med Cell Longev. 2021;2021:4657014.

    PubMed  PubMed Central  Google Scholar 

  11. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  CAS  PubMed  Google Scholar 

  12. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science (New York, NY). 2011;333(6046):1109–12.

    Article  CAS  Google Scholar 

  14. Peng X, Zhang C, Bao JP, Zhu L, Shi R, Xie ZY, Wang F, Wang K, Wu XT. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment. Bone Jt Res. 2020;9(5):225–35.

    Article  Google Scholar 

  15. Priem D, van Loo G, Bertrand MJM. A20 and cell death-driven inflammation. Trends Immunol. 2020;41(5):421–35.

    Article  CAS  PubMed  Google Scholar 

  16. Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44.

    Article  CAS  PubMed  Google Scholar 

  17. Yoo SM, Jung YK. A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells. 2018;41(1):18–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nasto LA, Robinson AR, Ngo K, Clauson CL, Dong Q, St Croix C, Sowa G, Pola E, Robbins PD, Kang J, Niedernhofer LJ, Wipf P, Vo NV. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration. J Orthop Res. 2013;31(7):1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Ma A, Watanabe M. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy. 2015;11(7):1052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Ma Y, Yang Z, Lan H, Liu G, Zhang Y, Xia H, Wang X, Han F, Tu X, Liu B. TNFAIP3 ameliorates the degeneration of inflammatory human nucleus pulposus cells by inhibiting mTOR signaling and promoting autophagy. Aging. 2020;12(23):24242–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhai Y, Lin P, Feng Z, Lu H, Han Q, Chen J, Zhang Y, He Q, Nan G, Luo X, Wang B, Feng F, Liu F, Chen Z, Zhu P. TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy. 2018;14(9):1629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajan NE, Bloom O, Maidhof R, Stetson N, Sherry B, Levine M, Chahine NO. Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine. 2013;38(16):1343–51.

    Article  PubMed  Google Scholar 

  24. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.

    Article  CAS  PubMed  Google Scholar 

  25. Shin WH, Park JH, Chung KC. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep. 2020;53(1):56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 2020;297(1):26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhdanov AV, Aviello G, Knaus UG, Papkovsky DB. Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential. Biochim Biophys Acta. 2017;1861(2):198–204.

    Article  CAS  Google Scholar 

  29. Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J Hepatol. 2017;66(4):693–702.

    Article  CAS  PubMed  Google Scholar 

  30. Wang D, He X, Wang D, Peng P, Xu X, Gao B, Zheng C, Wang H, Jia H, Shang Q, Sun Z, Luo Z, Yang L. Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway. Front Cell Dev Biol. 2020;8:613006.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother Biomed Pharmacother. 2020;131:110660.

    Article  CAS  PubMed  Google Scholar 

  32. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.

    PubMed  PubMed Central  Google Scholar 

  33. Huang Y, Peng Y, Sun J, Li S, Hong J, Zhou J, Chen J, Yan J, Huang Z, Wang X, Chen W, Ye W. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation. 2020;43(3):796–809.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, Xu M, Li J, Qu R, Chen X, Jia S, Luo D, Liu L, Li P, Guo F, Vasilev K, Liu L, Hayball J, Dong S, Pan X, Li Y, Guo L, Cheng L, Li W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics. 2020;10(15):7015–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang P, Gu JM, Xie ZA, Gu Y, Jie ZW, Huang KM, Wang JY, Fan SW, Jiang XS, Hu ZJ. Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radic Biol Med. 2018;120:368–79.

    Article  CAS  PubMed  Google Scholar 

  36. Peng X, Wang K, Zhang C, Bao JP, Vlf C, Gao JW, Zhou ZM, Wu XT. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics. Free Radic Res. 2021;55:1–14.

    Article  CAS  Google Scholar 

  37. Xu G, Liu C, Jiang J, Liang T, Yu C, Qin Z, Zhang Z, Lu Z, Zhan X. A novel mechanism of intervertebral disc degeneration: imbalance between autophagy and apoptosis. Epigenomics. 2020;12(13):1095–108.

    Article  CAS  PubMed  Google Scholar 

  38. Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, Gu L, Lu R, Ni Z. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26:101254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu Y, Tang Y, Lu J, Zhang W, Zhu Y, Zhang S, Ma G, Jiang P, Zhang W. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic Biol Med. 2020;160:871–86.

    Article  CAS  PubMed  Google Scholar 

  40. Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol. 2020;142:138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.

    Article  CAS  PubMed  Google Scholar 

  42. Whitley BN, Engelhart EA, Hoppins S. Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion. 2019;49:269–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pyatrikas DV, Fedoseeva IV, Varakina NN, Rusaleva TM, Stepanov AV, Fedyaeva AV, Borovskii GB, Rikhvanov EG. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. FEMS Microbiol Lett. 2015;362(12):082.

    Article  CAS  Google Scholar 

  44. Yang RZ, Xu WN, Zheng HL, Zheng XF, Li B, Jiang LS, Jiang SD. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J Cell Physiol. 2021;236(4):2725–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful for the experimental technical support provided by Southeast University School of Medicine.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81871810, 81702201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Wu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Responsible Editor: Jason J. McDougall.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhang, C., Zhou, ZM. et al. A20 attenuates pyroptosis and apoptosis in nucleus pulposus cells via promoting mitophagy and stabilizing mitochondrial dynamics. Inflamm. Res. 71, 695–710 (2022). https://doi.org/10.1007/s00011-022-01570-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01570-6

Keywords

Navigation