Skip to main content
Log in

Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Here, we used various approaches to investigate the suppressive role of daphnetin in LPS-induced inflammatory response, with the goal to understand the underlining molecular mechanism by which daphnetin regulated these processes.

Methods

We examined the survival rate and the lung injury in the mice model of LPS-induced endotoxemia. The production of pro-inflammatory factors including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was measured by ELISA and nitrite analysis, respectively. The expression of inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2), and the activation of signaling molecules was determined by immunoblotting. The production of reactive oxygen species (ROS) was measured by the ROS assay.

Results

In vivo study showed that daphnetin enhanced the survival rate and reduced the lung injury in mice with LPS-induced endotoxemia. Both in vivo and in vitro study showed that daphnetin prevented the production of pro-inflammatory factors including TNF-α, IL-1β, IL-6, NO, and PGE2 after LPS challenge. In Raw264.7 cells, we found that daphnetin reduced LPS-induced expression of iNOS and COX-2, and suppressed LPS-induced ROS production. In addition, we found that daphnetin suppressed the activation of JAK/STATs pathway and inhibited the nucleus import of STAT1 and STAT3.

Conclusions

Here, our results indicate that daphnetin shows anti-inflammatory properties, at least in part, through suppressing LPS-induced activation of JAK/STATs cascades and ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DFN:

Daphnetin

LPS:

Lipopolysaccharide

IL:

Interleukin

TNF:

Tumor necrosis factor

NO:

Nitric oxide

PGE2:

Prostaglandin E2

iNOS:

Inducible NO synthase

COX-2:

Cyclooxygenase 2

JAK:

Janus protein tyrosine kinase

STAT:

Signal transducers and activators of transcription

MAPKs:

Mitogen-activated protein kinases

ROS:

Reactive oxygen species

I.P. injection:

Intraperitoneal injection

References

  1. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    Article  CAS  PubMed  Google Scholar 

  2. Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:289–95.

    Article  PubMed  Google Scholar 

  3. Kang Y-J, Wingerd BA, Arakawa T, Smith WL. Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol. 2006;177:8111–22.

    Article  CAS  PubMed  Google Scholar 

  4. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci. 1994;91:2046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manzi S, Wasko MCM. Inflammation-mediated rheumatic diseases and atherosclerosis. Ann Rheum Dis. 2000;59:321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    Article  CAS  PubMed  Google Scholar 

  7. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  8. Davies M, Hagen PO. Systemic inflammatory response syndrome. Br J Surg. 1997;84:920–35.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. The Journal of Immunology. 2004;172:20–4.

    Article  CAS  PubMed  Google Scholar 

  10. Noguchi S, Nakatsuka M, Konishi H, Kamada Y, Chekir C, Kudo T. Nafamostat mesilate suppresses NF-κB activation and NO overproduction in LPS-treated macrophages. Int Immunopharmacol. 2003;3:1335–44.

    Article  CAS  PubMed  Google Scholar 

  11. Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene. 1999;18:6867–74.

    Article  Google Scholar 

  13. Chan ED, Riches DW. IFN-γ + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 mapk in a mouse macrophage cell line. Am J Physiol Cell Physiol. 2001;280:C441–50.

    CAS  PubMed  Google Scholar 

  14. Chen B-C, Chen Y, Lin W. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology. 1999;97:124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park EJ, Park SY, Joe E-h, Jou I. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem. 2003;278:14747–52.

    Article  CAS  PubMed  Google Scholar 

  16. Okugawa S, Ota Y, Kitazawa T, Nakayama K, Yanagimoto S, Tsukada K, et al. Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am J Physiol Cell Physiol. 2003;285:C399–408.

    Article  CAS  PubMed  Google Scholar 

  17. Kisseleva T, Bhattacharya S, Braunstein J, Schindler C. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285:1–24.

    Article  CAS  PubMed  Google Scholar 

  18. Kovarik P, Mangold M, Ramsauer K, Heidari H, Steinborn R, Zotter A, et al. Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J. 2001;20:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen Z, Zhong Z, Darnell JE. Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995;82:241–50.

    Article  CAS  PubMed  Google Scholar 

  20. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int 2013; 2013.

  21. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des. 2004;10:3813–33.

    Article  CAS  PubMed  Google Scholar 

  22. R K, A L, E M HK. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4:471–9.

    Article  Google Scholar 

  23. Hoffmann A, Baltimore D. Circuitry of nucleus factor kappaB signaling. Immunological Reviews 2006;210:171–186.

    Article  PubMed  Google Scholar 

  24. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

    Article  CAS  PubMed  Google Scholar 

  25. Qi Z, Yin F, Lu L, Shen L, Qi S, Lan L, et al. Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm Res. 2013;62:845–55.

    Article  CAS  PubMed  Google Scholar 

  26. Pan X, Cao X, Li N, Xu Y, Wu Q, Bai J, et al. Forsythin inhibits lipopolysaccharide-induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production. Agents Actions. 2014;63:597–608.

    CAS  Google Scholar 

  27. Levy DE, Jr DJ. STATS: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.

    Article  CAS  PubMed  Google Scholar 

  28. Yu Z, Zhang W, Kone BC. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nucleus factor kappaB. Biochem J. 2002;367:e75683.

    Article  Google Scholar 

  29. Pfitzner E, Kliem S, Baus D, Litterst CM. The role of STATs in inflammation and inflammatory diseases. Curr Pharm Des. 2004;10:2839–50.

    Article  CAS  PubMed  Google Scholar 

  30. Caldow MK, Cameron-Smith D. JAK/STAT pathway: Heidelberg: Springer, 2012. pp. 495–497.

    Google Scholar 

  31. Jain N, Zhang T, Fong SL, Lim CP, Cao X. Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene. 1998;17:3157–67.

    Article  CAS  PubMed  Google Scholar 

  32. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285:1–24.

    Article  CAS  PubMed  Google Scholar 

  33. Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol. 2009;15:1702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Devasagayam T, Tilak J, Boloor K, Sane KS, Ghaskadbi SS, Lele R. Free radicals and antioxidants in human health: current status and future prospects. Japi. 2004;52:4.

    Google Scholar 

  35. Aruoma OI, Grootveld M, Bahorun T. Free radicals in biology and medicine: from inflammation to biotechnology. Biofactors. 2006;27:1–3.

    Article  CAS  PubMed  Google Scholar 

  36. Kou X, Qi S, Dai W, Luo L, Yin Z. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol. 2011;11:1095–102.

    Article  CAS  PubMed  Google Scholar 

  37. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 2013;2013:563–8.

    Article  Google Scholar 

  38. Fylaktakidou KC, Ke HLD, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr Pharm Des. 2004;10:3813–33.

    Article  CAS  PubMed  Google Scholar 

  39. Yu W-w, Lu Z, Zhang H, Kang Y-h, Mao Y, Wang H-h, et al. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury. J Agric Food Chem. 2014;62:12315–25.

    Article  Google Scholar 

  40. Ferrero-Miliani L, Nielsen O, Ps, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol. 2007;147:227–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F, Park DR, et al. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164:1896–903.

    Article  CAS  PubMed  Google Scholar 

  43. Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P, et al. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax. 2015;70:740.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Andrey F, Lihua Y, Hua D, Hammock BD, Crofford LJ. Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fatty Acids. 2013;89:351–8.

    Article  Google Scholar 

  45. Macmicking J, Xie QA, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  CAS  PubMed  Google Scholar 

  46. Guo JY, Huo HR, Yang YX, Li CH, Liu HB, Zhao BS, et al. 2-methoxycinnamaldehyde reduces IL-1beta-induced prostaglandin production in rat cerebral endothelial cells. Biol Pharm Bulletin. 2006;29:2214–21.

    Article  CAS  Google Scholar 

  47. Liu Z, Fan Y, Wang Y, Han C, Pan Y, Huang H, et al. Dipyrithione inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in macrophages and protects against endotoxic shock in mice. Febs Lett. 2008;582:1643–50.

    Article  CAS  PubMed  Google Scholar 

  48. Ganster RW, Taylor BS, Shao L, Geller DA. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci. 2001;98:8638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. T K, S B, CW S JB. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285:1–24.

    Article  Google Scholar 

  50. Pellegrini S, Dusanter-Fourt I. The Structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997;248:615–33.

    Article  CAS  PubMed  Google Scholar 

  51. Galdiero M, Vitiello M, D’Isanto M, Raieta K, Galdiero E. STAT1 and STAT3 phosphorylation by porins are independent of JAKs but are dependent on MAPK pathway and plays a role in U937 cells production of interleukin-6. Cytokine. 2006;36:218–28.

    Article  CAS  PubMed  Google Scholar 

  52. Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways. Int Immunopharmacol. 2011;11:1166–72.

    Article  CAS  PubMed  Google Scholar 

  53. Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Investig. 2001;107:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:728–49.

    Article  Google Scholar 

  55. Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol. 2006;72:1493–505.

    Article  CAS  PubMed  Google Scholar 

  56. Kamezaki K, Shimoda K, Numata A, Matsuda T, Nakayama KI, Harada M. The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int Immunol. 2004;16:1173–9.

    Article  CAS  PubMed  Google Scholar 

  57. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:1640–52.

    Google Scholar 

  58. Madamanchi N, Li S, Patterson C, Runge M. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol. 2001;21:321–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81471557, 31571166, 81671565, and 31500628) a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 164320H106) and Jiangsu Major Nature Science Foundation of High Education (No. 12KJA180006). We thank lab members for their encouragements.

Author contributions

Conceived and designed the experiments: ZMY LS. Performed the experiments: LS. Analysis the data: ZMY L. Lan LS L. Luo TZ JW XMS. Contributed reagents/materials/analysis tools: ZMY L. Lan L. Luo LS. Wrote the paper: LS ZMY L. Luo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Lan, Lan Luo or Zhimin Yin.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Zhou, T., Wang, J. et al. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production. Inflamm. Res. 66, 579–589 (2017). https://doi.org/10.1007/s00011-017-1039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1039-1

Keywords

Navigation