Skip to main content

Advertisement

Log in

GM-CSF and GM-CSF receptor have regulatory role in transforming rat mesenteric mesothelial cells into macrophage-like cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

During peritonitis, mesothelial cells assume macrophage characteristics, expressing macrophage markers, indicating that they might differentiate into macrophage-like cells.

Materials and subjects

Twenty-five male rats were used for in vivo experiments. For in vitro experiments, a primary mesentery culture model was developed. The mesothelial cell to macrophage-like cell transition was followed by studying ED1 expression.

Treatments

In vitro primary mesenteric culture was treated with granulocyte–macrophage colony-stimulating factor (GM-CSF, 1 ng/ml). Blocking internalization of receptor–ligand complex, Dynasore (80 µM) was used. Acute peritonitis was induced by Freund’s adjuvant’s (1 ml) intraperitoneal injection.

Results

Immunohistochemistry: GM-CSF in vitro treatment resulted in a prominent ED1 expression in transformed mesothelial cells. Blocking the internalization, ED1 expression could not be detected. GM-CSF receptor (both α and β) was expressed in mesothelial cells in vitro (even if the GM-CSF was not present) and in vivo. Inflammation resulted in an increasing GM-CSF and GM-CSF-receptor level in the lysate of mesothelial cells.

Conclusions

Mesothelial cells can differentiate into macrophage-like cells, and GM-CSF, produced by the mesothelial cells, has probably an autocrine regulatory role in this transition. Our results provide new data about the plasticity of mesothelial cell and support the idea that during inflammation macrophages can derive from non-hematopoietic sources as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Furth R, Cohn ZA, Hirsch JG, Humphry JH, Spector WG, Lange-Woort HL. Mononuclear phagocytic system: new classification of macrophages, monocytes and their cell line. Bull World Health Organ. 1972;47:651–8.

    PubMed  PubMed Central  Google Scholar 

  2. Geissmann F, Manz MG, Jung S, Siewehe MH, Merad M, Ley K. Development of monocytes, macrophages and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginsel LA, Rijfkogel LP, Daems WT. A dual origin of macrophages? Review and hypothesis. In: Reichard S, Kojima M, editors. Macrophage biology. New York: Alan R. Liss; 1985. p. 621–49.

    Google Scholar 

  4. De Bakker JM, de Wit AW, Woelders H, Ginsel LA, Deams WT. On the origin of peritoneal resident macrophages. II. Recovery of the resident macrophage population in the peritoneal cavity and milky spots after peritoneal cell depletion. J Submicrosc Cytol. 1985;7:141–51.

    Google Scholar 

  5. Papadimitriou JM, Ashman RB. Macrophages: current view on their differentiation, structure and function. Ultrastruct Pathol. 1989;13:343–72.

    Article  CAS  PubMed  Google Scholar 

  6. Kiss AL, Kittel A. Early endocytotic steps in elicited macrophages: omega-shaped plasma membrane vesicles at their cell surface. Cell Biol Int. 1995;19:527–38.

    Article  CAS  PubMed  Google Scholar 

  7. Katz S, Balogh P, Nagy N, Kiss AL. Epithelial-to-mesenchymal transition induced by Freund’s adjuvant treatment in rat mesothelial cells: a morphological and immunocytochemical study. Pathol Oncol Res. 2012;18:641–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rasko JEJ, Grough MM. Granulocyte macrophage-colony stimulating factor. In: Thompson AW, editor. Cytokine handbook. 2 ed. New York: Academic Press; 1994. p. 342–69.

  9. Gasson JC, Weisbart RH, Kaufman SE, Clark SC, Hewich RM, Wong GG, Golde DW. Purified human GM-colony stimulating factor: direct action on neutrophils. Science. 1984;226:1339–42.

    Article  CAS  PubMed  Google Scholar 

  10. Kupper TS, Lee F, Birchall N, Clark S, Dower S. Interleukin-1 binds to specific receptors on keratinocytes and induces granulocyte/macrophage colony stimulating factor mRNA and protein. A potential autocrine role for IL-1 in epidermis. J Clin Investig. 1988;82:1787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Metcalf D, Begley CG, Johnson GR, Nicola NA, Vadas MA, Lopez AF, Williamson DJ, Wong GG, Clark SC, Wang EA. Biologic properties in vitro of a recombinant human granulocyte–macrophage colony-stimulating factor. Blood. 1986;67:37–45.

    CAS  PubMed  Google Scholar 

  12. Martinez-Moczygemba M, Huston DP. Biology of common beta receptor-signaling cytokines: IL-3, IL-5 and GM-CSF. J Allergy Clin Immunol. 2003;112:653–65.

    Article  CAS  PubMed  Google Scholar 

  13. Liou W, Geuze HJ, Slot JW. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996;106:41–58.

    Article  CAS  PubMed  Google Scholar 

  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher SJ, Poulter NS, Haining EJ, Rappoport JZ. Clathrin-mediated endocytosis regulates occluding, and not focal adhesion, distribution during epithelial wound healing. Biol Cell. 2012;104:238–56.

    Article  CAS  PubMed  Google Scholar 

  16. Katz S, Balogh P, Kiss AL. Mesothelial cells can detach from the mesentery and differentiate into macrophage-like cells. APMIS. 2011;119:782–93.

    Article  PubMed  Google Scholar 

  17. Hamilton LA. GM-CSF in inflammation and autoimmunity. Trends Immunol. 2002;23:403–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte–macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25:405–28.

    Article  CAS  PubMed  Google Scholar 

  19. Fukuzawa H, Sawada M, Kayahara T, Morita-Fujisawa Y, Suzuki K, Seno H, Takaishi S, Chiba T. Identification of GM-CSF in Paneth cells using single-cell RT-PCR. Biochem Biophys Res Commun. 2003;312:897–902.

    Article  CAS  PubMed  Google Scholar 

  20. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte–macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci. 1990;87:9655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park LS, Friend D, Gills S, Urdal DL. Characterization of the cell surface receptor for human granulocyte/macrophage colony-stimulating factor. J Exp Med. 1986;164:251–62.

    Article  CAS  PubMed  Google Scholar 

  23. Griffin JD, Cannistra SA, Sullivan R, Demetri GD, Ernst TJ, Kanakura Y. The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning. 1990;8:35–44.

    Article  CAS  PubMed  Google Scholar 

  24. Bussolino F, Colotta F, Bocchietto E, Guglielmetti A, Mantovani A. Recent developments in the cell biology of granulocyte–macrophage colony-stimulating factor and granulocyte colony-stimulating factor: activities on endothelial cells. Int J Clin Lab Res. 1993;23:8–12.

    Article  CAS  PubMed  Google Scholar 

  25. Panja A, Goldberg S, Eckmann L, Krishen P, Mayer L. The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. J Immunol. 1998;161:3675–84.

    CAS  PubMed  Google Scholar 

  26. Egea L, Hirata Y, Kagnoff MF. GM-CSF: a role in immune and inflammatory reactions in intestine. Expert Rev Gastroenterol Hepatol. 2010;4:723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao Y, Chegini N. Human fallopian tube expresses granulocyte–macrophage colony stimulating factor (GM-CSF) and GM-CSF alpha and beta receptors and contain the immunoreactive GM-CSF protein. J Clin Endocrinol Metab. 1994;79:662–5.

    CAS  PubMed  Google Scholar 

  28. Zhao Y, Chegini N. The expression of granulocyte macrophage-colony stimulating factor (GM-CSF) and receptors in human endometrium. Am J Reprod Immunol. 1999;42:303–11.

    Article  CAS  PubMed  Google Scholar 

  29. Robertson SA, Seamark RF, Guilbert LJ, Wegmann TG. The role of cytokines in gestation. Crit Rev Immunol. 1994;14:239–92.

    Article  CAS  PubMed  Google Scholar 

  30. Balogh P, Szabó A, Katz S, Likó I, Patócs A, Kiss AL. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund’s adjuvant treatment. PLoS One. 2013;8. doi:10.1371/journal.pone.0079508.

  31. Corda D, Hidalgo Carcedo C, Bonazzi M, Luini A, Spano S. Molecular aspects of membrane fission in the secretory pathway. Cell Mol Life Sci. 2002;59:1819–32.

    Article  CAS  PubMed  Google Scholar 

  32. Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci. 2003;116:4707–14.

    Article  CAS  PubMed  Google Scholar 

  33. Takei K, Yoshida Y, Yamada H. Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem. 2005;137:243–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our thankfulness to Professor Pál Röhlich for the precious comments and accurate language correction of the manuscript. Our special thanks go to Katalin Lőcsey for her valuable technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Kiss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, S., Zsiros, V., Dóczi, N. et al. GM-CSF and GM-CSF receptor have regulatory role in transforming rat mesenteric mesothelial cells into macrophage-like cells. Inflamm. Res. 65, 827–836 (2016). https://doi.org/10.1007/s00011-016-0967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0967-5

Keywords

Navigation