1 Introduction

Let \(\varvec{k}\) be a field of characteristic 0 with the prime field \(\varvec{q}\subset \varvec{k}\) which is isomorphic to the field \(\mathbb {Q}\) of all rational numbers. Assume that \((G,+)\) is a commutative group. For \(s\in \mathbb {N}\cup \{\infty \}\) by \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) we denote the set

$$\begin{aligned} \left\{ \sum _{j=0}^sa_jx^j: a_j\in \varvec{k}\; \text{ for } \,j\in \{0\}\cup \mathbb {N}\,\right\} . \end{aligned}$$

If \(s<\infty \) it is the ring of all s-truncated formal power series over \(\varvec{k}\). Otherwise \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_{\infty }\) is the ring of all formal power series over \(\varvec{k}\), so we have \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]=\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_{\infty }\). More details about \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) are presented in the next section. Let \(\Gamma ^s\subset \varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) be the set of all s-truncated formal power series which are invertible with respect to substitution \(\circ \) in \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\). Clearly \((\Gamma ^s,\circ )\) are groups for all \(s\in \mathbb {N}\cup \{\infty \}\).

A non-empty family \({\mathcal {F}}=(F_t)_{t\in G}\subset \Gamma ^s\) satisfying

$$\begin{aligned} F_{t_1+t_2}=F_{t_1}\circ F_{t_2}\qquad \text{ for } \,t_1,t_2\in G \end{aligned}$$

is called a one-parameter group of (s-truncated) formal power series. A characterization of one-parameter groups of formal power series can be found among others in [2]. In the case when \({\mathcal {F}}\ni F_t(x)=c_1(t)x+\sum _{j=2}^sc_j(t)x^j\) and either the set \(\varvec{F}_1=\{c_1(t)\in \varvec{k}^\star :t\in G\,\}\) is infinite or the family \({\mathcal {F}}=\{F_t:t\in G\,\}\) is finite, one can find \(S\in \Gamma ^s\) such that

$$\begin{aligned} F_t(x)=S^{-1}(c_1(t)S(x))\qquad \text{ for } \,t\in G. \end{aligned}$$

The case when \(\varvec{F}_1\) is finite but \({\mathcal {F}}\) is infinite is much more complicated and no explicit form of such a group is known. A possible and known description uses sequences of polynomials defined recursively (see [2, 3]).

It was proved in [3, 5, 6] that each element \({\mathcal {F}}\ni \Phi =F_{t_0}\) for \(t_0\in G\) of a one-parameter group \((F_t)_{t\in G}\) is a solution of the third Aczél-Jabotinsky formal differential equation

$$\begin{aligned} \frac{{\textrm{ d}}\Phi }{{\textrm{ d}}x}\cdot H=(H\circ \Phi ), \end{aligned}$$
(1)

where \(H(x)=\frac{\partial F_t}{\partial t}(x)|_{t=0}\) is the so-called infinitesimal generator of the group \((F_t)_{t\in G}\) (assuming that \((F_t)_{t\in G}\) is formally differentiable). In [3] all groups of solutions of (1) are described in the ring \(\varvec{\varvec{k}}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) over an arbitrary field \(\varvec{k}\) of characteristic 0. Those descriptions are based on recurrent constructions of two sequences of polynomials over \(\varvec{q}\). Earlier results (see [5]) were proved in the ring of formal power series (only the case \(s=\infty \)) over \(\mathbb {C}\). It is known (see [3, 5]) that for \(s=\infty \) all possible groups of solutions of (1) are commutative. The situation for finite s is different (cf. [3]) and then also non-commutative groups of solutions appear.

Here we will construct some two-parameter family of formal power series. This will allow us to give explicit forms of groups of solutions of (1) for a specific form of the generator H. In particular cases we obtain also explicit forms of non-commutative groups of solutions of (1).

2 The rings of formal power series and truncated formal power series

In the ring \(\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]\) of formal power series \(\sum _{j=0}^{\infty }c_jx^j\) over \(\varvec{k}\) we define the order of a formal power series by

$$\begin{aligned} {\textrm{ ord}}\,\left( \sum _{j=0}^{\infty }c_jx^j\right) = \min \{j\in \{0\}\cup \mathbb {N}: c_j\ne 0\,\}, \end{aligned}$$

where \(\min \emptyset :=\infty \). In the ideal \(\mathfrak {m}=(x)=x\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]\) of formal power series f with \({\textrm{ ord}}\,f\ge 1\) we define a substitution in the following way:

$$\begin{aligned} (f\circ g)(x)=\sum _{j=1}^{\infty }c_j\left( \sum _{l=1}^{\infty }d_lx^l\right) ^j \end{aligned}$$

for \(f(x)=\sum _{j=1}^{\infty }c_jx^j\in \mathfrak {m}\) and \(g(x)=\sum _{j=1}^{\infty }d_jx^j\in \mathfrak {m}\). Then f is invertible with respect to substitution if and only if \({\textrm{ ord}}\,f=1\), whence,

$$\begin{aligned} \Gamma ^{\infty }=\{f\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]:{\textrm{ ord}}\,f=1\,\}. \end{aligned}$$

It is a group under substitution \(\circ \) with unit element \(L_1(x)=x\).

Let \(s\in \mathbb {N}\) be a positive integer. The ring \(\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) of s-truncated formal power series is the quotient ring \(\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]/\mathfrak {m}^{s+1}\) where

$$\begin{aligned} \mathfrak {m}^{s+1}=x^{s+1}\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]=\{f\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]:{\textrm{ ord}}\,f \ge s+1\,\}. \end{aligned}$$

To each coset \(f+\mathfrak {m}^{s+1}\) with \(f(x)=\sum _{j=0}^{\infty }c_jx^j\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]\) we associate the s-truncation \(f^{[s]}\) of f given by

$$\begin{aligned} f^{[s]}(x):=\sum _{j=0}^sc_jx^j\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\subset \varvec{k}[{x}]\subset \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]. \end{aligned}$$

In \(\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) we introduce operations of addition, multiplication and substitution in the following way:

$$\begin{aligned} \begin{array}{l} (f_1+f_2)(x)=f_1(x)+f_2(x), \\[.5ex] (f_1\cdot f_2)(x)=(f_1\cdot f_2)^{[s]}(x),\\[.5ex] (f_1\circ f_2)(x)=(f_1\circ f_2)^{[s]}(x) \end{array} \end{aligned}$$

for \(f_1,f_2\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\). Then \(\Gamma ^s\) is the set \(\{f\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s:{\textrm{ ord}}\,f=1\,\}\). It is a group under substitution, with unit element \(L_1\).

It is known that if \(\pi ^k_l:\Gamma ^k\rightarrow \Gamma ^l\) for \(k\ge l\) are natural projections defined by l-truncation, then the group \(\Gamma ^{\infty }\) can be treated as the projective limit of \((\Gamma ^s)_{s\in \mathbb {N}}\), that is \(\Gamma ^{\infty }=\lim _{\leftarrow }\Gamma ^s\) with the canonical projections \(\pi ^{\infty }_l:\Gamma ^{\infty }\rightarrow \Gamma ^l\). Moreover, for \(s\in \mathbb {N}\cup \{\infty \}\) we put \(\Gamma _1^s:=\ker \pi ^s_1\).

For a fixed positive integer n by \(\varvec{E}_n\subset \varvec{k}^\star :=\varvec{k}\setminus \{0\}\) we denote the set of all roots of order n of \(1\in \varvec{k}\), that is the set of all roots of the polynomial \(x^n-1\in \varvec{k}[x]\) in \(\varvec{k}\). A root \(c\in \varvec{E}_n\) is called primitive of order \(n\ge 2\) provided c is not a root of any polynomial \(x^k-1\) for \(1\le k<n\). By a semicanonical form of order \(l\in \mathbb {N}\) in \(\Gamma ^s\) we mean any \(f(x)=\sum _{j=0}^rc_{jl+1}x^{jl+1}\), where r is either the greatest positive integer with \(rl+1\le s\) for finite s, or \(r=\infty \). Let \({\mathcal {N}}^s_l\) be the family of all semicanonical forms in \(\Gamma ^s\) of order l and let \(c\in \varvec{E}_l\) be a primitive root of order l. Put \(L_c(x)=cx\in \Gamma ^s\). Then (see [1, Fact 2.2])

$$\begin{aligned} {\mathcal {N}}^s_l=\left\{ f\in \Gamma ^s:f\circ L_c=L_c\circ f\,\right\} , \end{aligned}$$

and thus \({\mathcal {N}}_l^s\) is a subgroup of \(\Gamma ^s\). Note that \({\mathcal {N}}^s_1=\Gamma ^s\).

3 Descriptions and properties of the substitution

We will need two descriptions of the substitution law in \(\Gamma ^s\). Fix \(k,l\in \mathbb {Z}\) with \(k\le l\). Put \(|k,l|=\{n\in \mathbb {Z}: k\le n\le l\,\}\) and \(|k,\infty |=\{n\in \mathbb {Z}:n\ge k\,\}\). We assume that \(0^0=1\), \(|k,l|=\emptyset \) for \(k>l\), \(\sum _{t\in \emptyset }a_t=0\) and \(\prod _{t\in \emptyset }a_t=1\).

We begin with the following lemma, which is here an important tool in the construction of an iteration group given in the next section.

Lemma 1

(see [4]) Fix \(s\in \mathbb {N}\cup \{\infty \}\), \(s\ge 2\). If \(F_1(x)=\sum _{i=1}^sa_ix^i\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\), \(F_2(x)=\sum _{i=1}^sb_i x^i\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\) and \((F_1\circ F_2)(x) =\sum _{n=1}^sd_nx^n\in \varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\), then

$$\begin{aligned} d_n= \sum _{k=1}^n a_k \sum _{\overline{v}_k \in V_{k,n}}\prod _{j=1}^k b_{v_j}\qquad \text{ for } \,n\in |1,s|, \end{aligned}$$
(2)

for every positive integer n, where

$$\begin{aligned} V_{k,n}=\left\{ \overline{v}_k=(v_1,\ldots ,v_k)\in |1,n|^k:\; \sum _{i=1}^k v_i=n \;\right\} \qquad \text{ for } \,1\le k\le n. \end{aligned}$$

For example, for \(n=1,2,3\), from (2) we get

$$\begin{aligned} d_1=a_1b_1,\quad d_2=a_1b_2+a_2b_1^2,\quad d_3=a_1b_3+2a_2b_1b_2+a_3b_1^3. \end{aligned}$$

We prove now the characterization of substitution in the subgroup \({\mathcal {N}}^s_l\). For a fixed integer \(l\ge 1\) we put \({\mathbb {N}}_l=\{j\in \mathbb {N}: j\equiv 1\,{\textrm{ mod}}\,l\,\}\).

Corollary 1

Fix \(r\in \mathbb {N}\cup \{\infty \}\), \(l\in \mathbb {N}\). If \(F_1(x)=\sum _{j=0}^ra_{jl+1}x^{jl+1}\in \mathcal {N}^{rl+1}_l\) and \(F_2(x)=\sum _{j=0}^rb_{jl+1}x^{jl+1}\in \mathcal {N}^{rl+1}_l\), then \((F_1\circ F_2)(x)=\sum _{j=0}^rd_{jl+1}x^{jl+1}x \in \mathcal {N}^{rl+1}_l\) and

$$\begin{aligned} d_{nl+1}=\sum _{k=0}^na_{kl+1}\sum _{ \overline{\nu }_{kl+1}\in \widehat{V}^l_{kl+1,nl+1}}\prod _{j=1}^{kl+1}b_{\nu _jl+1}\; \text{ for } \,n\in |1,r|, \end{aligned}$$
(3)

where

$$\begin{aligned} \widehat{V}_{kl+1,nl+1}^l=\left\{ \overline{\nu }_{kl+1}=(\nu _1,\ldots ,\nu _{kl+1}) \in |0,n-k|^{kl+1}: \sum _{j=1}^{kl+1}\nu _j=n-k\,\right\} \end{aligned}$$

for \(1\le k\le n\).

Proof

Since \(\mathcal {N}_l^{rl+1}\) is a subgroup of \(\Gamma ^{rl+1}\), consequently \((F_1\circ F_2)(x)\in \mathcal {N}_l^{rl+1}\). In order to compute \(d_{nl+1}\) for \(n\le r\), define

$$\begin{aligned} \widetilde{V}_{kl+1,nl+1}^l=\Bigg \{\overline{v}_{kl+1}= (v_1,\ldots ,v_{kl+1})\in \mathbb {N}_l^{kl+1}:\sum _{i=1}^{kl+1}v_i=nl+1\Bigg \},\; k\in |0,n|. \end{aligned}$$

It is a subset of \(V_{kl+1,nl+1}\). We put \(a_k=b_k=0\) in (2) for \(k\in |2,r|\setminus \mathbb {N}_l\). Since \((F_1\circ F_2)(x)\in \mathcal {N}_l^{rl+1}\), so

$$\begin{aligned} d_{nl+1}=\sum _{k=1}^{nl+1}a_k \sum _{\overline{v}_k \in V_{k,nl+1}}\prod _{j=1}^k b_{v_j}=\sum _{k=0}^na_{kl+1} \sum _{\overline{v}_{kl+1}\in \widetilde{V}_{kl+1,nl+1}}\prod _{j=1}^{kl+1} b_{v_j}, \end{aligned}$$

Furthermore, for \(\overline{v}_{kl+1}=(v_1,\ldots ,v_{kl+1})\in \widetilde{V}_{kl+1,nl+1}^l\) we put \(v_j=\nu _j l+1\in \mathbb {N}_l\) with \(\nu _j\in |0,n|\). Then

$$\begin{aligned} nl+1=\sum _{j=1}^{kl+1}(\nu _jl+1)=l\sum _{j=1}^{kl+1}\nu _j+kl+1, \end{aligned}$$

hence \(\sum _{j=1}^{kl+1}\nu _j=n-k\), thus \(\nu _j\in |0,n-k|\) for all \(j\in |1,kl+1|\). Finally,

$$\begin{aligned} \begin{array}{rcl} d_{nl+1}&{}=&{}\displaystyle \sum _{k=0}^na_{kl+1} \sum _{\overline{v}_{kl+1} \in \widetilde{V}_{kl+1,nl+1}}\prod _{j=1}^{kl+1} b_{v_j}\\ &{}=&{}\displaystyle \sum _{k=0}^na_{kl+1} \sum _{\overline{\nu }_{kl+1} \in \widehat{V}_{kl+1,nl+1}}\prod _{j=1}^{kl+1} b_{\nu _jl+1}. \end{array} \end{aligned}$$

4 The construction

Now, we construct a general example. For fixed \(l\ge 1\) and \(k\ge 0\) we define the so called l-fold factorial

$$\begin{aligned} (kl+1)!_l:=\prod _{j=0}^k(jl+1), \end{aligned}$$

assuming additionally \((-l+1)!_{l}:=1\). For \(l=1\) it coincides with the standard notion of factorial. Moreover, we introduce the following binary operation on \(\varvec{k}^{\star }\times \varvec{k}\):

$$\begin{aligned} (y_1,y_2)\diamond (z_1,z_2)=(y_1z_1,y_1z_2+y_2z_1^{l+1}) \qquad \text{ for } \,(y_1,y_2),(z_1,z_2)\in \varvec{k}^{\star }\times \varvec{k}. \end{aligned}$$

Then \((\varvec{k}^\star \times \varvec{k},\diamond )\) is a group isomorphic to \((\widehat{\Gamma }^{l+1},\circ )\), where

$$\begin{aligned} \widehat{\Gamma }^{l+1}:=\{c_1x+c_{l+1}x^{l+1}\in \Gamma ^{l+1}: c_1\in \varvec{k}^\star , c_{l+1}\in \varvec{k}\,\}. \end{aligned}$$

This group is non-commutative and (\(\varvec{E}_l\times \varvec{k},\diamond )\) is a commutative subgroup of \((\varvec{k}^\star \times \varvec{k},\diamond )\). Observe that for \(l=1\) we have \(\widehat{\Gamma }^{2}=\Gamma ^2\) as well as the family

$$\begin{aligned} \widehat{\Gamma }_1^{l+1}:=\{x+c_{l+1}x^{l+1}\in \widehat{\Gamma }^{l+1}: c_{l+1}\in \varvec{k}\,\} \end{aligned}$$

is a commutative group which is isomorphic to \((\{1\}\times \varvec{k},\diamond )\cong (\varvec{k},+)\).

Proposition 1

Fix \(r\in \mathbb {N}\cup \{\infty \}\), \(l\in \mathbb {N}\). The family \(\left( F^{(l)}_{(z_1,z_2)}(x)\right) _{(z_1,z_2) \in \varvec{k}^\star \times \varvec{k}}\),

$$\begin{aligned} F^{(l)}_{(z_1,z_2)}(x)=\sum _{n=0}^r \left( \frac{((n-1)l+1)!_{l}}{n!}\cdot \frac{z_2^n}{z_1^{n-1}}\right) x^{nl+1} \, \text{ for } \,(z_1,z_2)\in \varvec{k}^\star \times \varvec{k}, \end{aligned}$$
(4)

is a non-commutative two-parameter iteration group in \({\mathcal {N}}^{rl+1}_l\) if and only if

$$\begin{aligned} \frac{((n-1)l+1)!_l}{(n-k)!((k-1)l+1)!_{l}}= \sum _{\overline{\nu }_{kl+1}\in \widehat{V}^l_{kl+1,nl+1}} \prod _{j=1}^{kl+1}\frac{((\nu _j-1)l+1)!_{l}}{\nu _j!} \end{aligned}$$
(5)

holds true for all \(n\in \mathbb {N}\) and \(k\in |0,n|\).

Proof

Fix a positive integer l. We have to show that

$$\begin{aligned} F^{(l)}_{(y_1,y_2)\diamond (z_1,z_2)}=F^{(l)}_{(y_1,y_2)}\circ F^{(l)}_{(z_1,z_2)}\qquad \text{ for } \,(y_1,y_2),(z_1,z_2)\in \varvec{k}^\star \times \varvec{k} \end{aligned}$$
(6)

holds if and only if (5) is satisfied for \(n\in \mathbb {N}\) and \(k\in |0,n|\). Put

$$\begin{aligned} c_{nl+1}(z_1,z_2)=\frac{((n-1)l+1)!_{l}}{n!}\cdot \frac{z_2^n}{z_1^{n-1}} \quad \text{ for } \,(z_1,z_2)\in \varvec{k}^\star \times \varvec{k},\, n\in \{0\}\cup \mathbb {N}. \end{aligned}$$

On account of Corollary 1 condition (6) is equivalent to

$$\begin{aligned} \begin{array}{l} \displaystyle \sum _{n=0}^rc_{nl+1}(y_1z_1,y_1z_2+y_2z_1^{l+1})x^{nl+1}\\[1ex] \displaystyle = \sum _{k=0}^rc_{kl+1}(y_1,y_2)\left( \sum _{j=0}^rc_{jl+1}(z_1,z_2) x^{jl+1}\right) ^{kl+1}\\[1ex] \displaystyle =\sum _{n=0}^r\left( \sum _{k=0}^nc_{kl+1}(y_1,y_2) \sum _{\overline{\nu }_{kl+1}\in \widehat{V}_{kl+1,nl+1}^l}\prod _{j=0}^{kl+1} c_{\nu _{jl+1}}(z_1,z_2)\right) x^{nl+1}\;\,\text{ mod }\hspace{.5mm} x^{rl+2}. \end{array} \end{aligned}$$

We have

$$\begin{aligned} \begin{array}{rcl} c_{nl+1}(y_1z_1,y_1z_2+y_2z_1^{l+1})&{}=&{}\displaystyle \frac{((n-1)l+1)!_{l}}{n!}\frac{(y_1z_2+y_2z_1^{l+1})^n}{(y_1z_1)^{n-1}}\\[1.5ex] &{}=&{}\displaystyle \frac{((n-1)l+1)!_{l}}{n!}\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{\left( y_2z_1^{l+1}\right) ^k\cdot (y_1z_2)^{n-k}}{(y_1z_1)^{n-1}}\\[1.5ex] &{}=&{}\displaystyle \sum _{k=0}^n\frac{((n-1)l+1)!_l}{k!(n-k)!}\frac{y_2^k}{y_1^{k-1}}\cdot \frac{z_2^{n-k}}{z_1^{n-(l+1)k-1}}. \end{array} \end{aligned}$$

Moreover, \(\sum _{j=0}^{kl+1}\nu _j=n-k\) for \(\overline{\nu }_{kl+1}=(\nu _1,\ldots ,\nu _{kl+1})\in \widehat{V}^l_{kl+1,nl+1}\), hence

$$\begin{aligned}{} & {} \sum _{k=0}^nc_{kl+1}(y_1,y_2)\sum _{ \overline{\nu }_{kl+1}\in \widehat{V}^l_{nl+1,kl+1}}\prod _{j=1}^{kl+1}c_{\nu _{jl+1}} (z_1,z_2)\\{} & {} \quad \displaystyle = \sum _{k=0}^n\frac{((k-1)l+1)!_{l}}{k!}\frac{y_2^k}{y_1^{k-1}} \sum _{\overline{\nu }_{kl+1}\in \widehat{V}^l_{kl+1,nl+1}}\prod _{j=1}^{kl+1} \frac{((\nu _j-1)l+1)!_{l}}{\nu _j!}\frac{z_2^{\nu _j}}{z_1^{\nu _j-1}} \\{} & {} \quad \displaystyle = \sum _{k=0}^n\Bigg (\frac{((k-1)l+1)!_{l}}{k!} \cdot \sum _{\overline{\nu }_{kl+1}\in \widehat{V}^l_{kl+1,nl+1}} \prod _{j=1}^{kl+1}\frac{((\nu _j-1)l+1)!_{l}}{\nu _j!} \Bigg ) \frac{y_2^k}{y_1^{k-1}}\frac{z_2^{n-k}}{z_1^{n-(l+1)k-1}}. \end{aligned}$$

Thus (6) is equivalent to the system (5) for every \(n\in \mathbb {N}\) and \(k\in |0,n|\). \(\square \)

Remark 1

Note, that if \(l=1\), (5) holds true for every \(n\in \mathbb {N}\) and \(k\in |0,n|\). It is a consequence of the equality

$$\begin{aligned} \sum _{\overline{\nu }_{k+1}\in \widehat{V}^1_{k+1,n+1}} 1 =\left( {\begin{array}{c}n\\ k\end{array}}\right) \qquad \text{ for } \,n\in \mathbb {N},\,k\in |0,n| \end{aligned}$$

(the number of all compositions of the number \(n-k\) into \(k+1\) non-negative integers, or, which is the same, the number of all compositions of the number \(n+1\) onto \(k+1\) positive integers).

Corollary 2

Fix \(r\in \mathbb {N}\cup \{\infty \}\), \(l\in \mathbb {N}\). If the equalities (5) hold for \(n\in \mathbb {N}\) and \(k\in |0,n|\), then the iteration group \(\left( F^{(l)}_{(z_1,z_2)}(x)\right) _{(z_1,z_2) \in \varvec{k}^\star \times \varvec{k}}\) defined by (4) is isomorphic to \((\widehat{\Gamma }^{l+1},\circ )\).

Proof

Observe that (see the proof of Proposition 1) the coefficient functions \(c_{nl+1}\) of the iteration group \({\mathcal {F}}=\left( F^{(l)}_{(z_1,z_2)}(x)\right) _{(z_1,z_2) \in \varvec{k}^\star \times \varvec{k}}\) depend on two variables \((z_1,z_2)\in \varvec{k}^*\times \varvec{k}\). Moreover,

$$\begin{aligned} \pi ^{rl+1}_{l+1}\left( F^{(l)}_{(z_1,z_2)}\right) (x)=z_1x+z_2x^{l+1}\in \widehat{\Gamma }^{l+1} \qquad \text{ for } \,(z_1,z_2)\in \varvec{k}^*\times \varvec{k}. \end{aligned}$$

This implies that the projection \(\pi ^{rl+1}_{l+1}|_{\mathcal {F}}\) is injective. Whence \(\pi ^{rl+1}_{l+1}:\mathcal {F}\rightarrow \widehat{\Gamma }^{l+1}\) is an isomorphism. \(\square \)

Since \((\{1\}\times \varvec{k},\diamond )\) is a subgroup of the group \((\varvec{k}^*\times \varvec{k},\diamond )\) and \((\{1\}\times \varvec{k},\diamond )\) is isomorphic to \((\varvec{k},+)\), from Proposition 1 and Corollary 2 one can derive the following result.

Corollary 3

Fix \(r\in \mathbb {N}\cup \{\infty \}\) and \(l\in \mathbb {N}\). The family \(\left( G^{l}_t\right) _{t\in \varvec{k}}\),

$$\begin{aligned} G^{(l)}_t(x)=F^{(l)}_{(1,t)}(x)=\sum _{n=0}^r \left( \frac{((n-1)l+1)!_{l}}{n!}\cdot t^n\right) x^{nl+1}\; \text{ for } \,t\in \varvec{k}, \end{aligned}$$
(7)

is a commutative one-parameter iteration group in \({\mathcal {N}}^{rl+1}_l\) if and only if (5) holds for \(n\in \mathbb {N}\) and \(k\in |0,n|\). It is isomorphic to \((\varvec{k},+)\).

Remark 2

Fix \(r\in \mathbb {N}\cup \{\infty \}\), \(l\in \mathbb {N}\) and assume that condition (5) holds for \(n\in \mathbb {N}\) and \(k\in |0,n|\). For the group \(\left( G^{l}_t\right) _{t\in \varvec{k}}\) we have

$$\begin{aligned} \frac{\partial G_t^{(l)}}{\partial t}(x)= \sum _{n=1}^r \left( \frac{((n-1)l+1)!_{l}}{(n-1)!} t^{n-1}\right) x^{nl+1}\; \text{ for } \,t\in \varvec{k}, \end{aligned}$$

hence \(H(x)=\frac{\partial G^{(l)}_t}{\partial t}(x)|_{t=0}=x^{l+1}\) is the infinitesimal generator of \(\left( G^{(l)}_t\right) _{t\in \varvec{k}}\).

It is known, that (5) is valid for \(l=1\) (see Remark 1). We show now that (5) also holds true for an arbitrary positive integer \(l\ge 2\) and some values \(k\in |0,n|\).

Lemma 2

Condition (5) is trivially satisfied for \(k\in \{0,n\}\). Moreover, it is valid for all \(n\in \mathbb {N}\) and \(k\in |0,n|\), for which \(n-k\le 4\).

The proof of the above lemma is very technical and seems to be natural, but we present it for the convenience of the reader.

Proof of Lemma 2

For \(k=n\) we have \(\widehat{V}^l_{nl+1,nl+1}=\{(0,\ldots ,0)\}\), whereas for \(k=0\) we have \(\widehat{V}^l_{1,nl+1}=\{(n)\}\). Thus (5) is valid for \(k\in \{0,n\}\).

For \(k=n-1\) and \(\overline{\nu }_{(n-1)l+1}=(\nu _1,\ldots ,\nu _{(n-1)l+1})\in \widehat{V}^l_{(n-1)l+1,nl+1}\) we have \(\sum _{j=1}^{(n-1)l+1}\nu _j=n-(n-1)=1\). There are \((n-1)l+1\) sequences with one element equal to 1 and all remaining ones equal to 0. Hence

$$\begin{aligned}{} & {} ((n-2)l+1)!_{l} \sum _{\overline{\nu }_{(n-1)l+1}\in \widehat{V}^l_{(n-1)l+1,nl+1}}\prod _{j=1}^{(n-1)l+1} \frac{((\nu _j-1)l+1)!_{l}}{(\nu _j)!}\\{} & {} \quad \displaystyle =((n-2)l+1)!_l \cdot ((n-1)l+1)\cdot 1= ((n-1)l+1)!_l. \end{aligned}$$

Now, for \(k=n-2\) and \(\overline{\nu }_{(n-2)l+1}=(\nu _1,\ldots ,\nu _{(n-2)l+1})\in \widehat{V}^l_{(n-2)l+1,nl+1}\) exactly one of the following two possibilities holds:

  1. (a)

    either one element of the sequence \(\overline{\nu }_{(n-2)l+1}\) is equal to 2 and the remaining ones are equal to 0; there are \((n-2)l+1\) such sequences,

  2. (b)

    two elements of the sequence \(\overline{\nu }_{(n-2)l+1}\) are equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-2)l+1\\ 2\end{array}}\right) \) such sequences.

Thus

$$\begin{aligned}{} & {} ((n-3)l+1)!_{l} \sum _{\overline{\nu }_{(n-2)l+1}\in \widehat{V}^l_{(n-2)l+1,nl+1}}\prod _{j=1}^{(n-2)l+1} \frac{((\nu _j-1)l+1)!_{l}}{(\nu _j)!}\\{} & {} \displaystyle =((n-3)l+1)!_l\cdot \left( ((n-2)l+1)\cdot \frac{l+1}{2} +\left( {\begin{array}{c}(n-2)l+1\\ 2\end{array}}\right) \cdot 1\right) \\{} & {} \displaystyle = \frac{((n-1)l+1)!_l}{2!}. \end{aligned}$$

For \(k=n-3\) and \(\overline{\nu }_{(n-3)l+1}=(\nu _1,\ldots ,\nu _{(n-3)l+1})\in \widehat{V}^l_{(n-3)l+1,nl+1}\) exactly one of the following possibilities holds:

  1. (a)

    one element of the sequence \(\overline{\nu }_{(n-3)l+1}\) is equal to 3 and the remaining ones are equal to 0; there are \((n-3)l+1\) such sequences,

  2. (b)

    one element of the sequence \(\overline{\nu }_{(n-3)l+1}\) is equal to 2, another one is equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-3)l+1\\ 2\end{array}}\right) \cdot 2\) such sequences,

  3. (c)

    three elements of the sequence \(\overline{\nu }_{(n-3)l+1}\) are equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-3)l+1\\ 3\end{array}}\right) \) such sequences.

Then

$$\begin{aligned}{} & {} ((n-4)l+1)!_{l} \sum _{\overline{\nu }_{(n-3)l+1}\in \widehat{V}^l_{(n-3)l+1,nl+1}}\prod _{j=1}^{(n-3)l+1} \frac{((\nu _j-1)l+1)!_{l}}{(\nu _j)!}\\{} & {} \displaystyle =((n-4)l+1)!_l\cdot \left( ((n-3)l+1)\cdot \frac{(l+1)(2l+1)}{3!} \right. \\{} & {} \displaystyle \qquad \left. +\,2\cdot \left( {\begin{array}{c}(n-3)l+1\\ 2\end{array}}\right) \cdot \frac{l+1}{2}+\left( {\begin{array}{c}(n-3)l+1\\ 3\end{array}}\right) \cdot 1\right) =\frac{((n-1)l+1)!_l}{3!}. \end{aligned}$$

Finally, for \(k=n-4\), \(\overline{\nu }_{(n-4)l+1}=(\nu _1,\ldots ,\nu _{(n-4)l+1})\in \widehat{V}^l_{(n-4)l+1,nl+1}\) exactly one of the following possibilities holds:

  1. (a)

    one element of the sequence \(\overline{\nu }_{(n-4)l+1}\) is equal to 4 and the remaining ones are equal to 0; there are \((n-4)l+1\) such sequences,

  2. (b)

    one element of the sequence \(\overline{\nu }_{(n-4)l+1}\) is equal to 3, another one is equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-4)l+1\\ 2\end{array}}\right) \cdot 2\) such sequences,

  3. (c)

    two elements of the sequence \(\overline{\nu }_{(n-4)l+1}\) are equal to 2 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-4)l+1\\ 2\end{array}}\right) \) such sequences,

  4. (d)

    one element of the sequence \(\overline{\nu }_{(n-4)l+1}\) is equal to 2, two others are equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-4)l+1\\ 3\end{array}}\right) \cdot 3\) such sequences,

  5. (e)

    four elements of the sequence \(\overline{\nu }_{(n-4)l+1}\) are equal to 1 and the remaining ones are equal to 0; there are \(\left( {\begin{array}{c}(n-4)l+1\\ 4\end{array}}\right) \) such sequences.

Then

$$\begin{aligned}{} & {} ((n-5)l+1)!_{l} \sum _{\overline{\nu }_{(n-4)l+1}\in \widehat{V}^l_{(n-4)l+1,nl+1}}\prod _{j=1}^{(n-4)l+1} \frac{((\nu _j-1)l+1)!_{l}}{(\nu _j)!}\\{} & {} \displaystyle =((n-5)l+1)!_l\cdot \left( ((n-4)l+1)\cdot \frac{(l+1)(2l+1)(3l+1)}{4!} \right. \\{} & {} \displaystyle \quad +\,2\cdot \left( {\begin{array}{c}(n-4)l+1\\ 2\end{array}}\right) \cdot \frac{(l+1)(2l+1)}{3!}+\left( {\begin{array}{c}(n-4)l+1\\ 2\end{array}}\right) \cdot \left( \frac{l+1}{2}\right) ^2\\{} & {} \displaystyle \quad \left. +\,3\cdot \left( {\begin{array}{c}(n-4)l+1\\ 3\end{array}}\right) \cdot \frac{l+1}{2}+\left( {\begin{array}{c}(n-4)l+1\\ 4\end{array}}\right) \cdot 1\right) =\frac{((n-1)l+1)!_l}{4!}. \end{aligned}$$

This completes the proof. \(\square \)

Remark 3

Observe that on account of Lemma 2 condition (5) holds true for \(n\le 5\) and \(k\in |0,n|\).

Since (5) is always satisfied with \(l=1\), we obtain what follows.

Corollary 4

Fix \(s\in \mathbb {N}\cup \{\infty \}\) with \(s\ge 2\). Then

$$\begin{aligned} F^{(1)}_{(z_1,z_2)}(x)=z_1 x+z_2x^2+\sum _{n=2}^s\frac{z_2^n}{z_1^{n-1}}x^{n+1}\qquad \text{ for } \,(z_1,z_2)\in \varvec{k}^\star \times \varvec{k}, \end{aligned}$$

is a non-commutative two-parameter iteration group of invertible formal power series. It is an injective embedding of the group \(\Gamma ^2\) into \(\Gamma ^s\). In particular,

$$\begin{aligned} G^{(1)}_t(x)=F^{(1)}_{(1,t)}(x)=x+tx^2+\sum _{n=2}^st^nx^{n+1}\qquad \text{ for } \,t\in \varvec{k}, \end{aligned}$$

is a commutative one-parameter iteration group of formal power series over \(\varvec{k}\) with infinitesimal generator \(H(x)=\frac{\partial G^{(1)}_t}{\partial t}(x)|_{t=0}=x^2\).

The group \(\left( F^{(1)}_{(z_1,z_2)}\right) _{(z_1,z_2)\in \varvec{k}^*\times \varvec{k}}\) is isomorphic to \(\Gamma ^2\), whereas \(\left( G_t^{(1)}\right) _{t\in \varvec{k}}\) is isomorphic to \((\varvec{k},+)\).

In order to describe solutions of some special case of the Aczél-Jabotinsky differential equation we need the following groups (see [3]). For \(l,s\in \mathbb {N}\) with and \(2l+1\le s\) let us consider the product \(\varvec{E}_l\times \varvec{k}^{l+1}\) with an operation \(\overline{\diamond }:(\varvec{E}_l\times \varvec{k}^{l+1}) \times (\varvec{E}_l\times \varvec{k}^{l+1})\rightarrow \varvec{E}_{l+1} \times \varvec{k}^{l+1}\),

$$\begin{aligned}{} & {} (c_1,(c_j)_{j\in \{l\}\cup |s-l+1,s|})\overline{\diamond } (d_1,(d_j)_{j\in \{l\} \cup |s-l+1,s|})\\&\qquad&\displaystyle =(c_1d_1,(c_1d_j+d_1^jc_j)_{j\in \{l\}\cup |s-l+1,s|}) \end{aligned}$$

for \((c_1,(c_j)_{j\in \{l\}\cup |s-l+1,s|}),(d_1,(d_j)_{j\in \{l\}\cup |s-l+1,s|}) \in \varvec{E}_l\times \varvec{k}^{l+1}\). Similarly, if \(l,s\in \mathbb {N}\) with \(l+1\le s\le 2l\), we use the product \(\varvec{E}_l\times \varvec{k}^l\) with an operation \(\widehat{\diamond }:(\varvec{E}_l\times \varvec{k}^l) \times (\varvec{E}_l\times \varvec{k}^l)\rightarrow \varvec{E}_l\times \varvec{k}^l\) defined by

$$\begin{aligned} (c_1,(c_j)_{j\in |s-l+1,s|})\widehat{\diamond }(d_1,(d_j)_{j\in |s-l+1,s|}) =(c_1d_1,(c_1d_j+d_1^jc_j)_{j\in |s-l+1,s|}) \end{aligned}$$

for \((c_1,(c_j)_{j\in |s-l+1,s|}),(d_1,(d_j)_{j\in |s-l+1,s|}) \in \varvec{E}_l\times \varvec{k}^l\). Observe that for \(l\ge 2\) the groups \((\varvec{E}_l\times \varvec{k}^{l+1},\overline{\diamond })\) and \((\varvec{E}_l\times \varvec{k}^l,\widehat{\diamond })\) are not commutative provided \(\{1\}\subsetneq \varvec{E}_l\).

From [3] one can derive the following result.

Lemma 3

[3, Corollaries 5 and 6] Fix \(r\in \mathbb {N}\cup \{\infty \}\) and a positive integer l. Assume that \((G_t)_{t\in \varvec{k}}\), \(G_t(x)=x+tx^{l+1}+\sum _{j=2}^rc_{jl+1}(t)x^{jl+1}\in {\mathcal {N}}^{rl+1}_l\) with some \(c_{jl+1}:\varvec{k}\rightarrow \varvec{k}\) for \(j\in |2,r|\), is a one-parameter group of solutions of the differential equation

$$\begin{aligned} \frac{{\textrm{ d}}\Phi }{{\textrm{ d}}x}\cdot x^{l+1}=\left( \Phi (x)\right) ^{l+1} \end{aligned}$$
(8)

in the ring \(\varvec{k}[\hspace{-0.05cm}[{x}]\hspace{-0.05cm}]_s\), where either \(rl+1\le s<(r+1)l+1\) for finite r or \(s=\infty \) otherwise.

  1. (i)

    For \(s=\infty \) the family \((\widetilde{G}_{d,t})_{(d,t)\in \varvec{E}_l\times \varvec{k}}\),

$$\begin{aligned} \widetilde{G}_{d,t}=dx+tx^{l+1}+\sum _{j=2}^{\infty } dc_{jl+1}(d^{-1}t)x^{jl+1} \end{aligned}$$

is the group of all solutions of (8). It is isomorphic to \((\varvec{E}_l\times \varvec{k},\diamond )\).

  1. (ii)

    For \(s\in |2l+1,\infty |\) the family \(\left( \widetilde{G}_{d_1,t,d_{s-l+1},\ldots ,d_s} \right) _{(d_1,t,d_{s-l+1},\ldots ,d_s)\in \varvec{E}_l\times \varvec{k}^{l+1}}\) defined by

$$\begin{aligned} \begin{array}{rcl} \widetilde{G}_{d_1,t,d_{s-l+1},\ldots ,d_s}(x)&{}=&{} \displaystyle d_1x+tx^{l+1}+ \sum _{j=2}^{r-1}d_1c_{jl+1}(d_1^{-1}t)x^{jl+1}+\sum _{j=s-l+1}^{rl} d_jx^j \\[1ex] &{} &{} \displaystyle \qquad +(d_1c_{rl+1}(d_1^{-1}t)+d_{rl+1})x^{rl+1}+ \sum _{j=rl+2}^s d_jx^j, \end{array} \end{aligned}$$

is the group of all solutions of (8). It is isomorphic to \((\varvec{E}_l\times \varvec{k}^{l+1},\overline{\diamond })\).

  1. (iii)

    For \(2\le l+1\le s\le 2l\) the family \(\left( \widetilde{G}_{d_1,d_{s-l+1},\ldots ,d_s} \right) _{(d_1,d_{s-l+1},\ldots ,d_s)\in \varvec{E}_l\times \varvec{k}^l}\) defined by

$$\begin{aligned} \widetilde{G}_{d_1,d_{s-l+1},\ldots ,d_s}(x)=d_1x+ \sum _{j=s-l+1}^s d_jx^j \end{aligned}$$

is the group of all solutions of (8). It is isomorphic to \((\varvec{E}_l\times \varvec{k}^l,\widehat{\diamond })\).

Applying Corollary 4 we give an explicit form of the group of all solutions of the third Aczél-Jabotinsky formal differential equation (AJ) in the case \(H(x)=x^2\), that is

$$\begin{aligned} \frac{{\textrm{ d}}\Phi }{{\textrm{ d}}x}\cdot x^2=\left( \Phi (x)\right) ^2. \end{aligned}$$
(9)

Putting \(l=1\), thus \(d=1\), we obtain:

Corollary 5

  1. (i)

    The family \((G^{(1)}_t)_{t\in \varvec{k}}\),

$$\begin{aligned} G^{(1)}_t(x)=x+tx^2+\sum _{n=2}^{\infty }t^nx^{n+1} \qquad \text{ for } \,t\in \varvec{k}, \end{aligned}$$

is the group of all solutions of (9) for \(s=\infty \). It is isomorphic to \((\varvec{k},+)\) and so commutative.

  1. (ii)

    The family \((\widehat{G}^{(1)}_{(t,c)})_{(t,c)\in \varvec{k}^2}\),

$$\begin{aligned} \widehat{G}^{(1)}_{(t,c)}(x)=x+tx^2+\sum _{n=2}^{s-2}t^nx^{n+1}+ (c+t^{s-1})x^s \qquad \text{ for } \,(t,c)\in \varvec{k}^2, \end{aligned}$$

is the group of all solutions of (9) for \(s\in \mathbb {N}\), \(s\ge 3\). It is isomorphic to \((\varvec{k}^2,+)\) and so commutative.

  1. (iii)

    The family \(\widehat{\Gamma }^2_1=\{x+tx^2:t\in \varvec{k}\,\}\) is the group of all solutions of (9) for \(s=2\). It is isomorphic to \((\varvec{k},+)\) and so commutative.

According to Corollary 3, similar results for solutions of the formal differential equation (8) can be proved under the assumption that (5) holds true.

Corollary 6

Fix an integer \(l\ge 2\) and assume that (5) holds for \(n\in \mathbb {N}\cup \{0\}\) and \(k\in |0,n|\).

  1. (i)

    The family \((G^{(l)}_{(d,t)})_{(d,t)\in \varvec{E}_l\times \varvec{k}}\)

$$\begin{aligned} G^{(l)}_{(d,t)}(x)= & {} \sum _{n=0}^{\infty } \left( \frac{((n-1)l+1)!_{l}}{n!}\cdot \frac{t^n}{d^{n-1}}\right) x^{nl+1}\\= & {} dx+tx^{l+1}+\sum _{n=2}^{\infty } \left( \frac{((n-1)l+1)!_{l}}{n!}\cdot \frac{t^n}{d^{n-1}}\right) x^{nl+1} \text{ for } \,(d,t)\in \varvec{E}_l\times \varvec{k}, \end{aligned}$$

is the group of all solutions of (8) for \(r=\infty \). It is isomorphic to \((\varvec{E}_l\times \varvec{k},\diamond )\) and so commutative.

  1. (ii)

    The family \((\widehat{G}^{(l)}_{(d_1,t,d_{s-l+1},\ldots ,d_s)})_{(d_1,t,d_{s-l+1}, \ldots ,d_s) \in \varvec{E}_l\times \varvec{k}^{l+1}}\),

$$\begin{aligned}{} & {} {\widehat{G}^{(l)}_{(d_1,t,d_{s-l+1},\ldots ,d_s)}(x)= \displaystyle d_1x+tx^{l+1}+ \sum _{n=2}^{r-1}\frac{t^n}{d_1^{n-1}}x^{nl+1}+\sum _{j=s-l+1}^{rl} d_jx^j+}\\{} & {} \displaystyle \!\!\!\left( d_{rl+1}+\frac{t^{rl+1}}{d_1^{rl}}\right) x^{rl+1}+ \sum _{j=rl+2}^sd_jx^j \text{ for } (d_1,t,d_{s-l+1},\ldots ,d_s)\in \varvec{E}_l\times \varvec{k}^{l+1}, \end{aligned}$$

is the group of all solutions of (8) for a finite integer \(s\ge 2l+1\), where \(r\in \mathbb {N}\) is such that \(rl+1\le s< (r+1)l+1\). It is isomorphic to \((\varvec{E}_l\times \varvec{k}^{l+1},\overline{\diamond })\) and so non-commutative provided \(\{1\}\subsetneq \varvec{E}_l\).

  1. (iii)

    The family \(\{cx+c_{s-l+1}x^{s-l+1}+\ldots +c_sx^s:c\in \varvec{E}_l, c_{s-l+1},\ldots ,c_s\in \varvec{k}\,\}\) is the group of all solutions of (8) for \(s\in |l+1,2l|\), which is isomorphic to \((\varvec{E}_l\times \varvec{k}^l,\widehat{\diamond })\) and so non-commutative provided \(\{1\}\subsetneq \varvec{E}_l\).

Remark 4

We know that (5) holds true for all \(n\in \mathbb {N}\) and \(k\in |0,n|\). Since the proof of this fact uses a completely new approach, it will be proved in a separate paper.