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An explicit example of an iteration group in the ring of formal
power series

Wojciech Jab�loński

Abstract. We give an example of some iteration group in a ring of formal power series over
a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter
group of (truncated) formal power series under an additional condition. Consequently, we
are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky
differential equation in the ring of truncated formal power series.
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1. Introduction

Let k be a field of characteristic 0 with the prime field q ⊂ k which is isomor-
phic to the field Q of all rational numbers. Assume that (G,+) is a commuta-
tive group. For s ∈ N ∪ {∞} by k[[x]]s we denote the set

⎧
⎨

⎩

s∑

j=0

ajx
j : aj ∈ k for j ∈ {0} ∪ N

⎫
⎬

⎭
.

If s < ∞ it is the ring of all s-truncated formal power series over k. Otherwise
k[[x]]∞ is the ring of all formal power series over k, so we have k[[x]] = k[[x]]∞.
More details about k[[x]]s are presented in the next section. Let Γs ⊂ k[[x]]s be
the set of all s-truncated formal power series which are invertible with respect
to substitution ◦ in k[[x]]s. Clearly (Γs, ◦) are groups for all s ∈ N ∪ {∞}.

A non-empty family F = (Ft)t∈G ⊂ Γs satisfying

Ft1+t2 = Ft1 ◦ Ft2 for t1, t2 ∈ G

is called a one-parameter group of (s-truncated) formal power series. A charac-
terization of one-parameter groups of formal power series can be found among
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others in [2]. In the case when F � Ft(x) = c1(t)x +
∑s

j=2 cj(t)xj and either
the set F 1 = {c1(t) ∈ k� : t ∈ G } is infinite or the family F = {Ft : t ∈ G } is
finite, one can find S ∈ Γs such that

Ft(x) = S−1(c1(t)S(x)) for t ∈ G.

The case when F 1 is finite but F is infinite is much more complicated and no
explicit form of such a group is known. A possible and known description uses
sequences of polynomials defined recursively (see [2,3]).

It was proved in [3,5,6] that each element F � Φ = Ft0 for t0 ∈ G of a
one-parameter group (Ft)t∈G is a solution of the third Aczél-Jabotinsky formal
differential equation

dΦ
dx

· H = (H ◦ Φ), (1)

where H(x) = ∂Ft

∂t (x)|t=0 is the so-called infinitesimal generator of the group
(Ft)t∈G (assuming that (Ft)t∈G is formally differentiable). In [3] all groups
of solutions of (1) are described in the ring k[[x]]s over an arbitrary field k
of characteristic 0. Those descriptions are based on recurrent constructions of
two sequences of polynomials over q. Earlier results (see [5]) were proved in the
ring of formal power series (only the case s = ∞) over C. It is known (see [3,5])
that for s = ∞ all possible groups of solutions of (1) are commutative. The
situation for finite s is different (cf. [3]) and then also non-commutative groups
of solutions appear.

Here we will construct some two-parameter family of formal power series.
This will allow us to give explicit forms of groups of solutions of (1) for a specific
form of the generator H. In particular cases we obtain also explicit forms of
non-commutative groups of solutions of (1).

2. The rings of formal power series and truncated formal power series

In the ring k[[x]] of formal power series
∑∞

j=0 cjx
j over k we define the order

of a formal power series by

ord

⎛

⎝
∞∑

j=0

cjx
j

⎞

⎠ = min{j ∈ {0} ∪ N : cj �= 0 },

where min ∅ := ∞. In the ideal m = (x) = xk[[x]] of formal power series f with
ord f ≥ 1 we define a substitution in the following way:

(f ◦ g)(x) =
∞∑

j=1

cj

( ∞∑

l=1

dlx
l

)j
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for f(x) =
∑∞

j=1 cjx
j ∈ m and g(x) =

∑∞
j=1 djx

j ∈ m. Then f is invertible
with respect to substitution if and only if ord f = 1, whence,

Γ∞ = {f ∈ k[[x]] : ord f = 1 }.

It is a group under substitution ◦ with unit element L1(x) = x.
Let s ∈ N be a positive integer. The ring k[[x]]s of s-truncated formal power

series is the quotient ring k[[x]]/ms+1 where

ms+1 = xs+1k[[x]] = {f ∈ k[[x]] : ord f ≥ s + 1 }.

To each coset f + ms+1 with f(x) =
∑∞

j=0 cjx
j ∈ k[[x]] we associate the s-

truncation f [s] of f given by

f [s](x) :=
s∑

j=0

cjx
j ∈ k[[x]]s ⊂ k[x] ⊂ k[[x]].

In k[[x]]s we introduce operations of addition, multiplication and substitution
in the following way:

(f1 + f2)(x) = f1(x) + f2(x),
(f1 · f2)(x) = (f1 · f2)[s](x),
(f1 ◦ f2)(x) = (f1 ◦ f2)[s](x)

for f1, f2 ∈ k[[x]]s. Then Γs is the set {f ∈ k[[x]]s : ord f = 1 }. It is a group
under substitution, with unit element L1.

It is known that if πk
l : Γk → Γl for k ≥ l are natural projections defined

by l-truncation, then the group Γ∞ can be treated as the projective limit of
(Γs)s∈N, that is Γ∞ = lim← Γs with the canonical projections π∞

l : Γ∞ → Γl.
Moreover, for s ∈ N ∪ {∞} we put Γs

1 := ker πs
1.

For a fixed positive integer n by En ⊂ k� := k \ {0} we denote the set
of all roots of order n of 1 ∈ k, that is the set of all roots of the polynomial
xn − 1 ∈ k[x] in k. A root c ∈ En is called primitive of order n ≥ 2 provided
c is not a root of any polynomial xk − 1 for 1 ≤ k < n. By a semicanonical
form of order l ∈ N in Γs we mean any f(x) =

∑r
j=0 cjl+1x

jl+1, where r is
either the greatest positive integer with rl + 1 ≤ s for finite s, or r = ∞. Let
N s

l be the family of all semicanonical forms in Γs of order l and let c ∈ El be
a primitive root of order l. Put Lc(x) = cx ∈ Γs. Then (see [1, Fact 2.2])

N s
l = {f ∈ Γs : f ◦ Lc = Lc ◦ f } ,

and thus N s
l is a subgroup of Γs. Note that N s

1 = Γs.
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3. Descriptions and properties of the substitution

We will need two descriptions of the substitution law in Γs. Fix k, l ∈ Z with
k ≤ l. Put |k, l| = {n ∈ Z : k ≤ n ≤ l } and |k,∞| = {n ∈ Z : n ≥ k }. We
assume that 00 = 1, |k, l| = ∅ for k > l,

∑
t∈∅ at = 0 and

∏
t∈∅ at = 1.

We begin with the following lemma, which is here an important tool in the
construction of an iteration group given in the next section.

Lemma 1. (see [4]) Fix s ∈ N ∪ {∞}, s ≥ 2. If F1(x) =
∑s

i=1 aix
i ∈ k[[x]]s,

F2(x) =
∑s

i=1 bix
i ∈ k[[x]]s and (F1 ◦ F2)(x) =

∑s
n=1 dnxn ∈ k[[x]]s, then

dn =
n∑

k=1

ak

∑

vk∈Vk,n

k∏

j=1

bvj
for n ∈ |1, s|, (2)

for every positive integer n, where

Vk,n =

{

vk = (v1, . . . , vk) ∈ |1, n|k :
k∑

i=1

vi = n

}

for 1 ≤ k ≤ n.

For example, for n = 1, 2, 3, from (2) we get

d1 = a1b1, d2 = a1b2 + a2b
2
1, d3 = a1b3 + 2a2b1b2 + a3b

3
1.

We prove now the characterization of substitution in the subgroup N s
l . For

a fixed integer l ≥ 1 we put Nl = {j ∈ N : j ≡ 1mod l }.

Corollary 1. Fix r ∈ N∪{∞}, l ∈ N. If F1(x) =
∑r

j=0 ajl+1x
jl+1 ∈ N rl+1

l and
F2(x) =

∑r
j=0 bjl+1x

jl+1 ∈ N rl+1
l , then (F1 ◦ F2)(x) =

∑r
j=0 djl+1x

jl+1x ∈
N rl+1

l and

dnl+1 =
n∑

k=0

akl+1

∑

νkl+1∈V̂ l
kl+1,nl+1

kl+1∏

j=1

bνj l+1 for n ∈ |1, r|, (3)

where

V̂ l
kl+1,nl+1 =

⎧
⎨

⎩
νkl+1 = (ν1, . . . , νkl+1) ∈ |0, n − k|kl+1 :

kl+1∑

j=1

νj = n − k

⎫
⎬

⎭

for 1 ≤ k ≤ n.

Proof. Since N rl+1
l is a subgroup of Γrl+1, consequently (F1 ◦F2)(x) ∈ N rl+1

l .
In order to compute dnl+1 for n ≤ r, define

Ṽ l
kl+1,nl+1 =

{

vkl+1 = (v1, . . . , vkl+1) ∈ Nkl+1
l :

kl+1∑

i=1

vi = nl + 1

}

, k ∈ |0, n|.
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It is a subset of Vkl+1,nl+1. We put ak = bk = 0 in (2) for k ∈ |2, r| \ Nl. Since
(F1 ◦ F2)(x) ∈ N rl+1

l , so

dnl+1 =
nl+1∑

k=1

ak

∑

vk∈Vk,nl+1

k∏

j=1

bvj
=

n∑

k=0

akl+1

∑

vkl+1∈Ṽkl+1,nl+1

kl+1∏

j=1

bvj
,

Furthermore, for vkl+1 = (v1, . . . , vkl+1) ∈ Ṽ l
kl+1,nl+1 we put vj = νj l + 1 ∈ Nl

with νj ∈ |0, n|. Then

nl + 1 =
kl+1∑

j=1

(νj l + 1) = l

kl+1∑

j=1

νj + kl + 1,

hence
∑kl+1

j=1 νj = n − k, thus νj ∈ |0, n − k| for all j ∈ |1, kl + 1|. Finally,

dnl+1 =
n∑

k=0

akl+1

∑

vkl+1∈Ṽkl+1,nl+1

kl+1∏

j=1

bvj

=
n∑

k=0

akl+1

∑

νkl+1∈V̂kl+1,nl+1

kl+1∏

j=1

bνj l+1.

4. The construction

Now, we construct a general example. For fixed l ≥ 1 and k ≥ 0 we define the
so called l-fold factorial

(kl + 1)!l :=
k∏

j=0

(jl + 1),

assuming additionally (−l + 1)!l := 1. For l = 1 it coincides with the standard
notion of factorial. Moreover, we introduce the following binary operation on
k� × k:

(y1, y2) � (z1, z2) = (y1z1, y1z2 + y2z
l+1
1 ) for (y1, y2), (z1, z2) ∈ k� × k.

Then (k� × k, �) is a group isomorphic to (Γ̂l+1, ◦), where

Γ̂l+1 := {c1x + cl+1x
l+1 ∈ Γl+1 : c1 ∈ k�, cl+1 ∈ k }.

This group is non-commutative and (El × k, �) is a commutative subgroup of
(k� × k, �). Observe that for l = 1 we have Γ̂2 = Γ2 as well as the family

Γ̂l+1
1 := {x + cl+1x

l+1 ∈ Γ̂l+1 : cl+1 ∈ k }
is a commutative group which is isomorphic to ({1} × k, �) ∼= (k,+).
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Proposition 1. Fix r ∈ N ∪ {∞}, l ∈ N. The family
(
F

(l)
(z1,z2)

(x)
)

(z1,z2)∈k�×k
,

F
(l)
(z1,z2)

(x) =
r∑

n=0

(
((n − 1)l + 1)!l

n!
· zn

2

zn−1
1

)

xnl+1 for (z1, z2) ∈ k� × k, (4)

is a non-commutative two-parameter iteration group in N rl+1
l if and only if

((n − 1)l + 1)!l
(n − k)!((k − 1)l + 1)!l

=
∑

νkl+1∈V̂ l
kl+1,nl+1

kl+1∏

j=1

((νj − 1)l + 1)!l
νj !

(5)

holds true for all n ∈ N and k ∈ |0, n|.

Proof. Fix a positive integer l. We have to show that

F
(l)
(y1,y2)�(z1,z2)

= F
(l)
(y1,y2)

◦ F
(l)
(z1,z2)

for (y1, y2), (z1, z2) ∈ k� × k (6)

holds if and only if (5) is satisfied for n ∈ N and k ∈ |0, n|. Put

cnl+1(z1, z2) =
((n − 1)l + 1)!l

n!
· zn

2

zn−1
1

for (z1, z2) ∈ k� × k, n ∈ {0} ∪ N.

On account of Corollary 1 condition (6) is equivalent to

r∑

n=0

cnl+1(y1z1, y1z2 + y2z
l+1
1 )xnl+1

=
r∑

k=0

ckl+1(y1, y2)

⎛

⎝
r∑

j=0

cjl+1(z1, z2)xjl+1

⎞

⎠

kl+1

=
r∑

n=0

⎛

⎜
⎝

n∑

k=0

ckl+1(y1, y2)
∑

νkl+1∈V̂ l
kl+1,nl+1

kl+1∏

j=0

cνjl+1(z1, z2)

⎞

⎟
⎠ xnl+1 modxrl+2.

We have

cnl+1(y1z1, y1z2 + y2z
l+1
1 ) =

((n − 1)l + 1)!l
n!

(y1z2 + y2z
l+1
1 )n

(y1z1)n−1

=
((n − 1)l + 1)!l

n!

n∑

k=0

(
n

k

)(
y2z

l+1
1

)k · (y1z2)n−k

(y1z1)n−1

=
n∑

k=0

((n − 1)l + 1)!l
k!(n − k)!

yk
2

yk−1
1

· zn−k
2

z
n−(l+1)k−1
1

.
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Moreover,
∑kl+1

j=0 νj = n − k for νkl+1 = (ν1, . . . , νkl+1) ∈ V̂ l
kl+1,nl+1, hence

n∑

k=0

ckl+1(y1, y2)
∑

νkl+1∈V̂ l
nl+1,kl+1

kl+1∏

j=1

cνjl+1(z1, z2)

=

n∑

k=0

((k − 1)l + 1)!l

k!

yk
2

yk−1
1

∑

νkl+1∈V̂ l
kl+1,nl+1

kl+1∏

j=1

((νj − 1)l + 1)!l

νj !

z
νj

2

z
νj−1
1

=

n∑

k=0

(
((k − 1)l + 1)!l

k!
·

∑

νkl+1∈V̂ l
kl+1,nl+1

kl+1∏

j=1

((νj − 1)l + 1)!l

νj !

)
yk
2

yk−1
1

zn−k
2

z
n−(l+1)k−1
1

.

Thus (6) is equivalent to the system (5) for every n ∈ N and k ∈ |0, n|. �
Remark 1. Note, that if l = 1, (5) holds true for every n ∈ N and k ∈ |0, n|. It
is a consequence of the equality

∑

νk+1∈V̂ 1
k+1,n+1

1 =
(

n

k

)

for n ∈ N, k ∈ |0, n|

(the number of all compositions of the number n − k into k + 1 non-negative
integers, or, which is the same, the number of all compositions of the num-
ber n + 1 onto k + 1 positive integers).

Corollary 2. Fix r ∈ N ∪ {∞}, l ∈ N. If the equalities (5) hold for n ∈ N and
k ∈ |0, n|, then the iteration group

(
F

(l)
(z1,z2)

(x)
)

(z1,z2)∈k�×k
defined by (4) is

isomorphic to (Γ̂l+1, ◦).

Proof. Observe that (see the proof of Proposition 1) the coefficient functions
cnl+1 of the iteration group F =

(
F

(l)
(z1,z2)

(x)
)

(z1,z2)∈k�×k
depend on two vari-

ables (z1, z2) ∈ k∗ × k. Moreover,

πrl+1
l+1

(
F

(l)
(z1,z2)

)
(x) = z1x + z2x

l+1 ∈ Γ̂l+1 for (z1, z2) ∈ k∗ × k.

This implies that the projection πrl+1
l+1 |F is injective. Whence πrl+1

l+1 : F → Γ̂l+1

is an isomorphism. �
Since ({1} × k, �) is a subgroup of the group (k∗ × k, �) and ({1} × k, �) is

isomorphic to (k,+), from Proposition 1 and Corollary 2 one can derive the
following result.

Corollary 3. Fix r ∈ N ∪ {∞} and l ∈ N. The family
(
Gl

t

)

t∈k
,

G
(l)
t (x) = F

(l)
(1,t)(x) =

r∑

n=0

(
((n − 1)l + 1)!l

n!
· tn

)

xnl+1 for t ∈ k, (7)

is a commutative one-parameter iteration group in N rl+1
l if and only if (5)

holds for n ∈ N and k ∈ |0, n|. It is isomorphic to (k,+).
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Remark 2. Fix r ∈ N ∪ {∞}, l ∈ N and assume that condition (5) holds for
n ∈ N and k ∈ |0, n|. For the group

(
Gl

t

)

t∈k
we have

∂G
(l)
t

∂t
(x) =

r∑

n=1

(
((n − 1)l + 1)!l

(n − 1)!
tn−1

)

xnl+1 for t ∈ k,

hence H(x) = ∂G
(l)
t

∂t (x)|t=0 = xl+1 is the infinitesimal generator of
(
G

(l)
t

)

t∈k
.

It is known, that (5) is valid for l = 1 (see Remark 1). We show now that
(5) also holds true for an arbitrary positive integer l ≥ 2 and some values
k ∈ |0, n|.
Lemma 2. Condition (5) is trivially satisfied for k ∈ {0, n}. Moreover, it is
valid for all n ∈ N and k ∈ |0, n|, for which n − k ≤ 4.

The proof of the above lemma is very technical and seems to be natural,
but we present it for the convenience of the reader.

Proof of Lemma 2. For k = n we have V̂ l
nl+1,nl+1 = {(0, . . . , 0)}, whereas for

k = 0 we have V̂ l
1,nl+1 = {(n)}. Thus (5) is valid for k ∈ {0, n}.

For k = n − 1 and ν(n−1)l+1 = (ν1, . . . , ν(n−1)l+1) ∈ V̂ l
(n−1)l+1,nl+1 we have

∑(n−1)l+1
j=1 νj = n − (n − 1) = 1. There are (n − 1)l + 1 sequences with one

element equal to 1 and all remaining ones equal to 0. Hence

((n − 2)l + 1)!l
∑

ν(n−1)l+1∈V̂ l
(n−1)l+1,nl+1

(n−1)l+1∏

j=1

((νj − 1)l + 1)!l
(νj)!

= ((n − 2)l + 1)!l · ((n − 1)l + 1) · 1 = ((n − 1)l + 1)!l.

Now, for k = n − 2 and ν(n−2)l+1 = (ν1, . . . , ν(n−2)l+1) ∈ V̂ l
(n−2)l+1,nl+1

exactly one of the following two possibilities holds:
(a) either one element of the sequence ν(n−2)l+1 is equal to 2 and the remain-

ing ones are equal to 0; there are (n − 2)l + 1 such sequences,
(b) two elements of the sequence ν(n−2)l+1 are equal to 1 and the remaining

ones are equal to 0; there are
(
(n−2)l+1

2

)
such sequences.

Thus

((n − 3)l + 1)!l
∑

ν(n−2)l+1∈V̂ l
(n−2)l+1,nl+1

(n−2)l+1∏

j=1

((νj − 1)l + 1)!l
(νj)!

= ((n − 3)l + 1)!l ·
(

((n − 2)l + 1) · l + 1
2

+
(

(n − 2)l + 1
2

)

· 1
)

=
((n − 1)l + 1)!l

2!
.
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For k = n − 3 and ν(n−3)l+1 = (ν1, . . . , ν(n−3)l+1) ∈ V̂ l
(n−3)l+1,nl+1 exactly

one of the following possibilities holds:

(a) one element of the sequence ν(n−3)l+1 is equal to 3 and the remaining
ones are equal to 0; there are (n − 3)l + 1 such sequences,

(b) one element of the sequence ν(n−3)l+1 is equal to 2, another one is equal
to 1 and the remaining ones are equal to 0; there are

(
(n−3)l+1

2

) · 2 such
sequences,

(c) three elements of the sequence ν(n−3)l+1 are equal to 1 and the remaining
ones are equal to 0; there are

(
(n−3)l+1

3

)
such sequences.

Then

((n − 4)l + 1)!l
∑

ν(n−3)l+1∈V̂ l
(n−3)l+1,nl+1

(n−3)l+1∏

j=1

((νj − 1)l + 1)!l
(νj)!

= ((n − 4)l + 1)!l ·
(

((n − 3)l + 1) · (l + 1)(2l + 1)
3!

+ 2 ·
(

(n − 3)l + 1
2

)

· l + 1
2

+
(

(n − 3)l + 1
3

)

· 1
)

=
((n − 1)l + 1)!l

3!
.

Finally, for k = n − 4, ν(n−4)l+1 = (ν1, . . . , ν(n−4)l+1) ∈ V̂ l
(n−4)l+1,nl+1

exactly one of the following possibilities holds:

(a) one element of the sequence ν(n−4)l+1 is equal to 4 and the remaining
ones are equal to 0; there are (n − 4)l + 1 such sequences,

(b) one element of the sequence ν(n−4)l+1 is equal to 3, another one is equal
to 1 and the remaining ones are equal to 0; there are

(
(n−4)l+1

2

) · 2 such
sequences,

(c) two elements of the sequence ν(n−4)l+1 are equal to 2 and the remaining
ones are equal to 0; there are

(
(n−4)l+1

2

)
such sequences,

(d) one element of the sequence ν(n−4)l+1 is equal to 2, two others are equal
to 1 and the remaining ones are equal to 0; there are

(
(n−4)l+1

3

) · 3 such
sequences,

(e) four elements of the sequence ν(n−4)l+1 are equal to 1 and the remaining
ones are equal to 0; there are

(
(n−4)l+1

4

)
such sequences.
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Then

((n − 5)l + 1)!l
∑

ν(n−4)l+1∈V̂ l
(n−4)l+1,nl+1

(n−4)l+1∏

j=1

((νj − 1)l + 1)!l
(νj)!

= ((n − 5)l + 1)!l ·
(

((n − 4)l + 1) · (l + 1)(2l + 1)(3l + 1)
4!

+ 2 ·
(

(n − 4)l + 1
2

)

· (l + 1)(2l + 1)
3!

+
(

(n − 4)l + 1
2

)

·
(

l + 1
2

)2

+ 3 ·
(

(n − 4)l + 1
3

)

· l + 1
2

+
(

(n − 4)l + 1
4

)

· 1
)

=
((n − 1)l + 1)!l

4!
.

This completes the proof. �

Remark 3. Observe that on account of Lemma 2 condition (5) holds true for
n ≤ 5 and k ∈ |0, n|.

Since (5) is always satisfied with l = 1, we obtain what follows.

Corollary 4. Fix s ∈ N ∪ {∞} with s ≥ 2. Then

F
(1)
(z1,z2)

(x) = z1x + z2x
2 +

s∑

n=2

zn
2

zn−1
1

xn+1 for (z1, z2) ∈ k� × k,

is a non-commutative two-parameter iteration group of invertible formal power
series. It is an injective embedding of the group Γ2 into Γs. In particular,

G
(1)
t (x) = F

(1)
(1,t)(x) = x + tx2 +

s∑

n=2

tnxn+1 for t ∈ k,

is a commutative one-parameter iteration group of formal power series over k

with infinitesimal generator H(x) = ∂G
(1)
t

∂t (x)|t=0 = x2.

The group
(
F

(1)
(z1,z2)

)

(z1,z2)∈k∗×k
is isomorphic to Γ2, whereas

(
G

(1)
t

)

t∈k
is

isomorphic to (k,+).

In order to describe solutions of some special case of the Aczél-Jabotin-
sky differential equation we need the following groups (see [3]). For l, s ∈ N

with and 2l + 1 ≤ s let us consider the product El × kl+1 with an operation
� : (El × kl+1) × (El × kl+1) → El+1 × kl+1,

(c1, (cj)j∈{l}∪|s−l+1,s|)�(d1, (dj)j∈{l}∪|s−l+1,s|)

= (c1d1, (c1dj + dj
1cj)j∈{l}∪|s−l+1,s|)
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for (c1, (cj)j∈{l}∪|s−l+1,s|), (d1, (dj)j∈{l}∪|s−l+1,s|) ∈ El × kl+1. Similarly, if
l, s ∈ N with l + 1 ≤ s ≤ 2l, we use the product El × kl with an operation
�̂ : (El × kl) × (El × kl) → El × kl defined by

(c1, (cj)j∈|s−l+1,s|)�̂(d1, (dj)j∈|s−l+1,s|) = (c1d1, (c1dj + dj
1cj)j∈|s−l+1,s|)

for (c1, (cj)j∈|s−l+1,s|), (d1, (dj)j∈|s−l+1,s|) ∈ El×kl. Observe that for l ≥ 2 the
groups (El ×kl+1, �) and (El ×kl, �̂) are not commutative provided {1} � El.

From [3] one can derive the following result.

Lemma 3. [3, Corollaries 5 and 6] Fix r ∈ N ∪ {∞} and a positive integer l.
Assume that (Gt)t∈k , Gt(x) = x + txl+1 +

∑r
j=2 cjl+1(t)xjl+1 ∈ N rl+1

l with
some cjl+1 : k → k for j ∈ |2, r|, is a one-parameter group of solutions of the
differential equation

dΦ
dx

· xl+1 = (Φ(x))l+1 (8)

in the ring k[[x]]s, where either rl + 1 ≤ s < (r + 1)l + 1 for finite r or s = ∞
otherwise.

(i) For s = ∞ the family (G̃d,t)(d,t)∈E l×k ,

G̃d,t = dx + txl+1 +
∞∑

j=2

dcjl+1(d−1t)xjl+1

is the group of all solutions of (8). It is isomorphic to (El × k, �).

(ii) For s ∈ |2l + 1,∞| the family
(
G̃d1,t,ds−l+1,...,ds

)

(d1,t,ds−l+1,...,ds)∈E l×kl+1

defined by

G̃d1,t,ds−l+1,...,ds
(x) = d1x + txl+1 +

r−1∑

j=2

d1cjl+1(d−1
1 t)xjl+1 +

rl∑

j=s−l+1

djx
j

+(d1crl+1(d−1
1 t) + drl+1)xrl+1 +

s∑

j=rl+2

djx
j ,

is the group of all solutions of (8). It is isomorphic to (El × kl+1, �).

(iii) For 2 ≤ l + 1 ≤ s ≤ 2l the family
(
G̃d1,ds−l+1,...,ds

)

(d1,ds−l+1,...,ds)∈E l×kl

defined by

G̃d1,ds−l+1,...,ds
(x) = d1x +

s∑

j=s−l+1

djx
j

is the group of all solutions of (8). It is isomorphic to (El × kl, �̂).



W. Jab�loński AEM

Applying Corollary 4 we give an explicit form of the group of all solutions
of the third Aczél-Jabotinsky formal differential equation (AJ) in the case
H(x) = x2, that is

dΦ
dx

· x2 = (Φ(x))2 . (9)

Putting l = 1, thus d = 1, we obtain:

Corollary 5. (i) The family (G(1)
t )t∈k ,

G
(1)
t (x) = x + tx2 +

∞∑

n=2

tnxn+1 for t ∈ k,

is the group of all solutions of (9) for s = ∞. It is isomorphic to (k,+) and
so commutative.

(ii) The family (Ĝ(1)
(t,c))(t,c)∈k2 ,

Ĝ
(1)
(t,c)(x) = x + tx2 +

s−2∑

n=2

tnxn+1 + (c + ts−1)xs for (t, c) ∈ k2,

is the group of all solutions of (9) for s ∈ N, s ≥ 3. It is isomorphic to (k2,+)
and so commutative.

(iii) The family Γ̂2
1 = {x + tx2 : t ∈ k } is the group of all solutions of (9) for

s = 2. It is isomorphic to (k,+) and so commutative.

According to Corollary 3, similar results for solutions of the formal differ-
ential equation (8) can be proved under the assumption that (5) holds true.

Corollary 6. Fix an integer l ≥ 2 and assume that (5) holds for n ∈ N ∪ {0}
and k ∈ |0, n|.

(i) The family (G(l)
(d,t))(d,t)∈E l×k

G
(l)
(d,t)(x) =

∞∑

n=0

(
((n − 1)l + 1)!l

n!
· tn

dn−1

)

xnl+1

= dx+ txl+1 +
∞∑

n=2

(
((n − 1)l + 1)!l

n!
· tn

dn−1

)

xnl+1 for (d, t) ∈ E l × k ,

is the group of all solutions of (8) for r = ∞. It is isomorphic to (El × k, �)
and so commutative.

(ii) The family (Ĝ(l)
(d1,t,ds−l+1,...,ds)

)(d1,t,ds−l+1,...,ds)∈E l×kl+1 ,
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Ĝ
(l)
(d1,t,ds−l+1,...,ds)

(x) = d1x + txl+1 +
r−1∑

n=2

tn

dn−1
1

xnl+1 +
rl∑

j=s−l+1

djx
j+

(

drl+1 +
trl+1

drl
1

)

xrl+1 +
s∑

j=rl+2

djx
j for (d1, t, ds−l+1, . . . , ds) ∈ El × kl+1,

is the group of all solutions of (8) for a finite integer s ≥ 2l + 1, where r ∈ N

is such that rl + 1 ≤ s < (r + 1)l + 1. It is isomorphic to (El ×kl+1, �) and so
non-commutative provided {1} � El.

(iii) The family {cx + cs−l+1x
s−l+1 + . . . + csx

s : c ∈ El, cs−l+1, . . . , cs ∈ k }
is the group of all solutions of (8) for s ∈ |l + 1, 2l|, which is isomorphic
to (El × kl, �̂) and so non-commutative provided {1} � El.

Remark 4. We know that (5) holds true for all n ∈ N and k ∈ |0, n|. Since
the proof of this fact uses a completely new approach, it will be proved in
a separate paper.
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