Skip to main content
Log in

Estimation, dependence and stability of solutions of an iterative equation

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper we study estimation, continuous dependence and Hyers–Ulam stability for continuous solutions of a second order iterative equation. First we give an estimate for a bound of its continuous solutions. Then we give a Lipschitz estimation with the Lipschitz conditions (i.e., Hölder \(\hbox {exponent} =1\)) to given functions, which implies a continuous dependence of solutions and encourages a further discussion on the Hyers–Ulam stability. We similarly give a Hölder estimation with the Hölder conditions (i.e., Hölder \(\hbox {exponent} <1\)) to given functions, in a weaker sense than the above Lipschitz one, but it does not imply a continuous dependence. This actually suggests a question: Is the continuous dependence of solutions really critical for the Hölder exponent between \(<1\) and \(=1\)?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baron, K.: Recent results in the theory of functional equations in a single variable. Survey in 40th ISFE (August 2002, Gronów, Poland); Seminar LV, No. 15, Mathematisches Institut I, Universität Karlsruhe. http://www.mathematik.uni-karlsruhe.de/~semlv/ (2003)

  2. Baron, K., Jarczyk, W.: Recent results on functional equations in a single variable. Aequat. Math. 61, 1–48 (2001)

    Article  MATH  Google Scholar 

  3. Brillouët-Belluot, N.: Problem 15, Proceedings of 38th ISFE (2000 Hungary). Aequat. Math. 61, 304 (2001)

    Google Scholar 

  4. Bogatyi, S.: On the nonexistence of iterative roots. Topol. Appl. 76(2), 97–123 (1997)

    Article  MathSciNet  Google Scholar 

  5. Brillouët-Belluot, N., Zhang, W.: On a class of iterative-difference equations. J. Differ. Equ. Appl. 16(11), 1237–1255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzdek, J., Chudziak, J., Pales, Z.: A fixed point approach to stability of functional equations. Nonlinear Anal. 74, 6728–6732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czerwik, S.: On the continuous dependence of solutions of some functional equations on given functions. Ann. Pol. Math. 24, 247–252 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Forti, G.L.: Hyers–Ulam stability of functional equations in several variables. Aequat. Math. 50, 143–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge (1934)

    MATH  Google Scholar 

  12. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iannella, N., Kindermann, L.: Finding iterative roots with a spiking neural network. Inf. Process. Lett. 95, 545–551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isaacs, R.: Iterates of fractional order. Can. J. Math. 2, 409–416 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kindermann, L.: Computing iterative roots with neural networks. In: Proceedings of Fifth Conference on Neural Information Processing, vol. 2, pp. 713–715 (1998)

  16. Kordylewski, J., Kuczma, M.: On the continuous dependence of solutions of some functional equations on given functions, II. Ann. Pol. Math. 10, 167–174 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  18. Lee, Y.H., Jun, K.W.: A generalization of the Hyers–Ulam–Rassias stability of Jensen equation. J. Math. Anal. Appl. 238, 305–315 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leśniak, Z.: On fractional iterates of a Brouwer homeomorphism embeddable in a flow. J. Math. Anal. Appl. 366(1), 310–318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, L., Jarczyk, W., Li, L., Zhang, W.: Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2. Nonlinear Anal. 75, 286–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, L., Zhang, W.: Non-monotonic iterative roots extended from characteristic intervals. J. Math. Anal. Appl. 378, 359–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matkowski, J., Okrzesik, J.: On a composite functional equation. Demonstr. Math. 36, 653–658 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Ng, C.T., Zhang, W.: Invariant curves for planar mappings. J. Differ. Equ. Appl. 3, 147–168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pachpatte, B.G.: Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering, vol. 197. Academic Press, San Diego (1998)

    Google Scholar 

  25. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Si, J., Zhang, W.: Analytic solutions of a functional equation for invariant curves. J. Math. Anal. Appl. 259, 83–93 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang, X., Zhang, W.: Continuous solutions of a second order iterative equation, SCU Mathematics Preprint #170606 (2017). arxiv:1803.03770

  28. Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1964)

    MATH  Google Scholar 

  29. Zdun, M.C.: On iterative roots of homeomorphisms of the circle. Bull. Pol. Acad. Sci. Math. 48(2), 203–213 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Zeng, Y., Zhang, W.: Continuous solutions of an iterative-difference equation and Brillouët-Belluot’s problem. Publ. Math. Debr. 78(3–4), 613–624 (2011)

    Article  MATH  Google Scholar 

  31. Zhang, J., Yang, L.: Discussion on iterative roots of piecewise monotone functions. Acta. Math. Sin. 26, 398–412 (1983). (in Chinese)

    MATH  Google Scholar 

  32. Zhang, W.: Stability of the iterated equation \(\sum _{i=1}^n\lambda _if^i(x)=F(x)\). Acta Math. Sci. 32, 421–424 (1988)

    Article  Google Scholar 

  33. Zhang, W.: Discussion on the differentiable solutions of the iterated equation \(\sum _{i=1}^n\lambda _i f^i(x)=F(x)\). Nonlinear Anal. 15, 387–398 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Tang.

Additional information

Dedicated to Professor Karol Baron on his 70th birthday.

This work was supported by NSFC # 11401606, NSFC # 11771307, NSFC # 11726623, NSFC # 11521061, PCSIRT IRT 15R53, MYRG2015-00058-L2-FST, FDCT/099/2012/A3, and FDCT/031/2016/A1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, K.I., Tang, X. & Zhang, W. Estimation, dependence and stability of solutions of an iterative equation. Aequat. Math. 93, 59–77 (2019). https://doi.org/10.1007/s00010-018-0555-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-018-0555-6

Keywords

Mathematics Subject Classification

Navigation