Skip to main content
Log in

Positive Solutions for the Kirchhoff-Type Equation with Hartree Nonlinearities

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Kirchhoff-type equation:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\left( a+b\int _{\mathbb {R}^{N}}|\nabla u|^{2}\mathrm {d}x\right) \Delta u&{}\\ \qquad + \displaystyle \lambda V(x)u+\mu \phi |u|^{p-2}u=|u|^{q-2}u, &{} \text{ in } \mathbb {R}^{N},\\ (-\Delta )^{\frac{\alpha }{2}} \phi =|u|^{p}, &{} \text{ in } \mathbb {R}^{N},\\ \end{array} \right. \end{aligned}$$

where \(a,b>0\), \(0<\alpha <N\), \(N\ge 3\), \(2\le p<\frac{N+\alpha }{N-2}\), \(2<q<\min \{4, 2^{*}\}\), \(2^{*}=2N/(N-2)\) and \(\lambda ,~\mu >0\) are parameters. Using the truncation technique and the parameter-dependent compactness lemma, we prove the existence of positive solutions for the above problem when \(b,\mu \) are sufficiently small, and \(\lambda \) is large enough. Furthermore, the decay rate and the asymptotic behavior of the positive solutions are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alves, C., Souto, M., Soares, S.: Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition. J. Math. Anal. Appl. 377, 584–592 (2011)

  2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 4, 549–569 (2001)

    Article  MATH  Google Scholar 

  5. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for superlinear elliptic problems on \(\mathbb{R}^{3}\). Commun. Part. Diff. Equ. 20, 1725–1741 (1995)

    Article  MATH  Google Scholar 

  6. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Eqs. 248, 521–543 (2010)

    Article  MATH  Google Scholar 

  8. Che, G., Chen, H.: Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hartree nonlinearity. Mediterr. J. Math. 15, 131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Che, G., Chen, H.: Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth. Rev. Real Acad. Cienc. Exactas F. 114, 78 (2020)

    MATH  Google Scholar 

  10. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^{3}\). J. Funct. Anal. 269, 3500–3527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeanjean, L., Tanaka, K.: A positive solution for a nonlinear Schrödinger Poisson system on \(\mathbb{R}^{N}\). Indiana Univ. Math. J. 54, 443–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, Y., Zhou, H.S.: Schrödinger-Poisson system with steep potential well. J. Differ. Eqs. 251, 582–608 (2011)

    Article  MATH  Google Scholar 

  14. Jin, J., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in \(\mathbb{R}^{N}\). J. Math. Anal. Appl. 369, 564–574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirchhoff, G.: Mechanik, Teubner (1883)

  16. Li, F., Cao, J., Zhu, X.: Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity. J. Math. Anal. Appl. 418, 60–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, G., Ye, H.: On the concentration phenomenon of \(L^{2}\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Eqs. 266, 7101–7123 (2019)

    Article  MATH  Google Scholar 

  18. Li, Y., Li, F., Shi, J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Eqs. 253, 2285–2294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case. Parts 1,2. In: Ann. Inst. H. Poincaré Anal. Non Linéaire. vol. 1, pp. 109–145 (1984)

  20. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case. Parts 1,2. In: Ann. Inst. H. Poincaré Anal. Non Linéaire. vol. 2, pp. 223–283 (1984)

  21. Lü, D.: Positive solutions for Kirchhoff-Schrödinger–Poisson systems with general nonlinearity. Commun. Pure Appl. Anal. 17, 605–626 (2018)

  22. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Struwe, M.: Variational Methods. Springer-Verlag. Berlin, Heidelberg, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1990)

    Book  MATH  Google Scholar 

  24. Sun, J., Cheng, Y.H., Wu, T.F., Feng, Z.S.: Positive solutions of a superlinear Kirchhoff type equation in \(\mathbb{R}^{N}~(N\ge 4)\). Commun. Nonlinear Sci. Numer. Simulat. 71, 141–160 (2019)

    Article  MATH  Google Scholar 

  25. Sun, J., Ma, S.: Ground state solutions for some Schrödinger-Poisson systems with periodic potentials. J. Differ. Eqs. 260, 2119–2149 (2016)

    Article  MATH  Google Scholar 

  26. Sun, J., Wu, T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Eqs. 256, 1771–1792 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, J., Wu, T.F.: On Schrödinger-Poisson systems involving concave-convex nonlinearities via a novel constraint approach. Commun. Contemp. Math. 23, 2050048 (2021)

    Article  MATH  Google Scholar 

  28. Wang, D.B., Zhang, H.B., Ma, Y.M., Guan, W.: Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity. J. Appl. Math. Comput. 61, 611–634 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xie, Q., Zhou, B.X.: A study on the critical Kirchhoff problem in high-dimensional space. Z. Angew. Math. Phys. 73, 4 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, H.S., Li, T., Wu, T.F.: On the solvability of an indefinite nonlinear Kirchhoff equation via associated eigenvalue problems. J. Differ. Eqs. 269, 2853–2895 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Q., Xu, B.: Multiple solutions for Schrödinger-Poisson systems with indefinite potential and combined nonlinearity. J. Math. Anal. Appl. 455, 1668–1687 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, G., Zhu, X., Li, Y.: Existence of infinitely many solutions to a class of Kirchhoff–Schrödinger-Poisson system. Appl. Math. Lett. 2(56), 572–581 (2015)

    MATH  Google Scholar 

  33. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Eqs. 255, 1–23 (2013)

    Article  MATH  Google Scholar 

  34. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for carefully reading the manuscript, giving valuable comments and suggestions to improve the results as well as the exposition of this paper.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12001114) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110275).

Author information

Authors and Affiliations

Authors

Contributions

Guofeng Che had the idea for the manuscript and deduced the main proofs, Shanni Zhu wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guofeng Che.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Che, G. Positive Solutions for the Kirchhoff-Type Equation with Hartree Nonlinearities. Mediterr. J. Math. 19, 247 (2022). https://doi.org/10.1007/s00009-022-02157-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02157-5

Keywords

Mathematics Subject Classification

Navigation