Skip to main content
Log in

An Efficient Matrix Iterative Method for Computing Moore–Penrose Inverse

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this article is to develop and analyze the matrix iterative method for computing the Moore–Penrose inverse of a given complex matrix. The theoretical analysis of the presented method is established, which indicates that the method achieves at least ninth order of convergence. The effectiveness of the developed method is tested via computational efficiency index, and the number of iterations required for convergence. Besides it, numerical reports are provided on a variety of problems arising from different fields of science and engineering. In particular, we study the linear system of equations originated from the statically determinate truss problems, elliptic partial differential equations, and balancing chemical equations. It is demonstrated that the performance of the presented method is significantly better than its existing counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  2. Codevico, G., Pan, V.Y., Van Barel, M.: Newton-like iteration based on a cubic polynomial for structured matrices. Numer. Algorithms 36(4), 365–380 (2004)

    Article  MathSciNet  Google Scholar 

  3. Grosz, L.: Preconditioning by incomplete block elimination. Numer. Linear Algebra Appl. 7(7–8), 527–541 (2000)

    Article  MathSciNet  Google Scholar 

  4. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  5. Krishnamurthy, E.V., Sen, S.K.: Numerical Algorithms: Computations in Science and Engineering. Affiliated East-West Press, New Delhi (1986)

    Google Scholar 

  6. Li, H.B., Huang, T.Z., Zhang, Y., Liu, X.P., Gu, T.X.: Chebyshev-type methods and preconditioning techniques. Appl. Math. Comput. 218(2), 260–270 (2011)

    Article  MathSciNet  Google Scholar 

  7. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  8. Pan, V., Schreiber, R.: An improved Newton iteration for the generalized inverse of a matrix, with applications. SIAM J. Sci. Stat. Comput. 12(5), 1109–1130 (1991)

    Article  MathSciNet  Google Scholar 

  9. Penrose, R.: A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51(3), 406–413 (1955)

    Article  Google Scholar 

  10. Penrose, R.: On best approximate solutions of linear matrix equations. Math. Proc. Camb. Philos. Soc. 52(1), 17–19 (1956)

    Article  Google Scholar 

  11. Schulz, G.: Iterative berechung der reziproken matrix. ZAMM Z. Angew. Math. Mech. 13(1), 57–59 (1933)

    Article  Google Scholar 

  12. Söderström, T., Stewart, G.W.: On the numerical properties of an iterative method for computing the Moore-Penrose generalized inverse. SIAM J. Numer. Anal. 11(1), 61–74 (1974)

    Article  MathSciNet  Google Scholar 

  13. Soleimani, F., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8(4), 982–998 (2015)

    Article  MathSciNet  Google Scholar 

  14. Soleymani F.: A rapid numerical algorithm to compute matrix inversion. Int. J. Math. Math. Sci. Article ID 134653 (2012)

  15. Soleymani, F.: On finding robust approximate inverses for large sparse matrices. Linear Multilinear Algebra 62(10), 1314–1334 (2014)

    Article  MathSciNet  Google Scholar 

  16. Soleymani, F., Stanimirović, P.S., Ullah, M.Z.: An accelerated iterative method for computing weighted Moore–Penrose inverse. Appl. Math. Comput. 222, 365–371 (2013)

    Article  MathSciNet  Google Scholar 

  17. Stanimirović, P.S., Cvetković-Ilić, D.S.: Successive matrix squaring algorithm for computing outer inverses. Appl. Math. Comput. 203(1), 19–29 (2008)

    Article  MathSciNet  Google Scholar 

  18. Toutounian, F., Soleymani, F.: An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix. Appl. Math. Comput. 224, 671–680 (2013)

    Article  MathSciNet  Google Scholar 

  19. Traub, J.F.: Iterative Methods for the Solution of Equations. American Mathematical Society, New York (1982)

    MATH  Google Scholar 

  20. Trott, M.: The Mathematica GuideBook for Programming. Springer, New York (2013)

    MATH  Google Scholar 

  21. Weiguo, L., Juan, L., Tiantian, Q.: A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra Appl. 438(1), 47–56 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Kansal, M. & Kumar, S. An Efficient Matrix Iterative Method for Computing Moore–Penrose Inverse. Mediterr. J. Math. 18, 42 (2021). https://doi.org/10.1007/s00009-020-01675-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01675-4

Keywords

Mathematics Subject Classification

Navigation