Skip to main content
Log in

Newton-Like Iteration Based on a Cubic Polynomial for Structured Matrices

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We recall Newton’s iteration for computing the inverse or Moore–Penrose generalized inverse of a matrix. Then we specialize this approach to the case of structured matrices where all input, output and intermediate auxiliary matrices are represented in a compressed form, via their short displacement generators. We design a new Newton-like iteration based on a cubic polynomial and show its effectiveness by some numerical experiments for matrices from the Toeplitz-like class and the Cauchy-like class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Ammar and P. Gader, New decompositions of the inverse of a Toeplitz matrix, in: Signal Processing, Scattering and Operator Theory, and Numerical Methods, eds. M.A. Kaashoek, J.H. van Schuppen and A.C.N. Ran (Birkhäuser, Basel, 1990) pp. 421–428.

    Google Scholar 

  2. A. Ben-Israel, A note on iterative method for generalized inversion of matrices, Math. Comp. 20 (1966) 439–440.

    Google Scholar 

  3. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966) 410–419.

    Google Scholar 

  4. D.A. Bini, G. Codevico and M. Van Barel, Solving Toeplitz least square problems by means of Newton’s iterations, Numer. Algorithms 33 (2003) 93–103.

    Google Scholar 

  5. D.A. Bini and B. Meini, Solving block banded block Toeplitz systems with banded Toeplitz blocks, F.T. Luk, Proc. SPIE 3807 (1999) 300–311.

    Google Scholar 

  6. D.A. Bini and V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms (Birkhäuser, Boston, 1994).

    Google Scholar 

  7. G. Codevico, V. Pan, M. Van Barel and X. Wang, Iterative inversion of structured matrices, Report TW351, Department of Computer Science, Katholieke Universiteit Leuven (2002); also in Special Issue on Algebraic and Numerical Algorithms of Theoret. Comput. Sci. (2004) (in press).

  8. I. Gohberg and V. Olshevsky, Circulants, displacements and decompositions of matrices, Integral Equations Operator Theory 15 (1992) 730–743.

    Google Scholar 

  9. I. Gohberg and A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs, Mat. Issledovaniia 2 (1972) 187–224.

    Google Scholar 

  10. G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1996).

    Google Scholar 

  11. G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators (Akademie-Verlag, Berlin, and Birkhäuser, Basel/Stuttgart, 1984).

    Google Scholar 

  12. T. Kailath, S.-Y. Kung and M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. 68 (1979) 395–407.

    Google Scholar 

  13. T. Kailath, S. Kung and M. Morf, Displacement ranks of a matrix, Bull. Amer. Math. Soc. 1 (1979) 769–773.

    Google Scholar 

  14. T. Kailath and A. Sayed, Displacement structure: Theory and applications, SIAM Rev. 37(3) (1995) 297–386.

    Google Scholar 

  15. T. Kailath and A.H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure (SIAM, Philadelphia, PA, 1999).

    Google Scholar 

  16. T. Kailath, A. Vieira and M. Morf, Inverses of Toeplitz operators, innovations and orthogonal polynomials, SIAM Rev. 20 (1978) 106–119.

    Google Scholar 

  17. M. Morf, Fast algorithms for multivariable systems, Ph.D. thesis, Department of Electrical Engineering, Stanford University, Stanford, CA (1974).

    Google Scholar 

  18. V.Y. Pan, Nearly optimal computations with structured matrices, in: Proc. of the 11th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’2000) (ACM/SIAM, New York, Philadephia, PA, 2000) pp. 953–962.

    Google Scholar 

  19. V.Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms (Birkhäuser/Springer, Boston/New York, 2001).

    Google Scholar 

  20. V.Y. Pan, M. Kunin, R.E. Rosholt and H. Cebecioğlu, Residual correction algorithms for general and structured matrices, Preprint (2002).

  21. V.Y. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM J. Sci. Statist. Comput. 12(5) (1991) 1109–1131.

    Google Scholar 

  22. V.Y. Pan and X. Wang, Inversion of displacement operators, SIAM J. Matrix Anal. Appl. 24(3) (2003) 660–677.

    Google Scholar 

  23. G. Schultz, Iterative Berechnung der Reciproken Matrix, Z. Angew. Math. Mech. 13 (1933) 57–59.

    Google Scholar 

  24. T. Söderström and G.W. Stewart, On the numerical properties of an iterative method for computing the Moore–Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974) 61–74.

    Google Scholar 

  25. M. Van Barel and G. Codevico, An adaptation of the Newton iteration method to solve symmetric positive definite Toeplitz systems, Report TW349, Department of Computer Science, Katholieke Universiteit Leuven (2002).

  26. Y. Wei, J. Cai and M. Ng, Computing Moore–Penrose inverses of Toeplitz matrices by Newton’s iteration, Math. Comput. Model., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codevico, G., Pan, V.Y. & Van Barel, M. Newton-Like Iteration Based on a Cubic Polynomial for Structured Matrices. Numer Algor 36, 365–380 (2004). https://doi.org/10.1007/s11075-004-3996-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-3996-z

Navigation