Skip to main content
Log in

Mittag–Leffler Functions and the Truncated \({\mathcal {V}}\)-fractional Derivative

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new type of fractional derivative, which we called truncated \({\mathcal {V}}\)-fractional derivative, for \(\alpha \)-differentiable functions, by means of the six-parameter truncated Mittag–Leffler function. One remarkable characteristic of this new derivative is that it generalizes several different fractional derivatives, recently introduced: conformable fractional derivative, alternative fractional derivative, truncated alternative fractional derivative, M-fractional derivative and truncated M-fractional derivative. This new truncated \({\mathcal {V}}\)-fractional derivative satisfies several important properties of the classical derivatives of integer order calculus: linearity, product rule, quotient rule, function composition and the chain rule. Also, as in the case of the Caputo derivative, the derivative of a constant is zero. Since the six parameters Mittag–Leffler function is a generalization of Mittag–Leffler functions of one, two, three, four and five parameters, we were able to extend some of the classical results of the integer-order calculus, namely: Rolle’s theorem, the mean value theorem and its extension. In addition, we present a theorem on the law of exponents for derivatives and as an application we calculate the truncated \({\mathcal {V}}\)-fractional derivative of the two-parameter Mittag–Leffler function. Finally, we present the \({\mathcal {V}}\)-fractional integral from which, as a natural consequence, new results appear as applications. Specifically, we generalize the inverse property, the fundamental theorem of calculus, a theorem associated with classical integration by parts, and the mean value theorem for integrals. We also calculate the \({\mathcal {V}}\)-fractional integral of the two-parameter Mittag–Leffler function. Further, we were able to establish the relation between the truncated \({\mathcal {V}}\)-fractional derivative and the truncated \({\mathcal {V}}\)-fractional integral and the fractional derivative and fractional integral in the Riemann–Liouville sense when the order parameter \(\alpha \) lies between 0 and 1 (\(0<\alpha <1\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \({\mathbb{E}}_{\alpha,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5, 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1(2), 161–198 (1971)

    Article  Google Scholar 

  3. Rabotnov, Y.N.: Elements of Hereditary Solid Mechanics. MIT Publishers, Moscow (1980)

    MATH  Google Scholar 

  4. Koeller, R.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mittag-Leffler, G.M.: Sur la nouvelle fonction \({\mathbb{E}}_{\alpha }(x)\). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  6. Wiman, A.: ber den fundamental satz in der theorie der funktionen \({\mathbb{E}}_{\alpha }(x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  Google Scholar 

  7. Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  8. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag–Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Salim, T.O., Faraj, A.W.: A generalization of Mittag–Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 3, 1–13 (2012)

    Article  Google Scholar 

  10. Khan, M.A., Ahmed, S.: On some properties of fractional calculus operators associated with generalized Mittag–Leffler function. Thai J. Math. 11, 645–654 (2013)

  11. Liang, Y., Chen, W.: A regularized Miners rule for fatigue reliability analysis with Mittag–Leffler statistics. Int. J. Damage Mech. 25, 691–704 (2016)

    Article  Google Scholar 

  12. Chen, W., Liang, Y., Hei, X.: Structural derivative based on inverse Mittag–Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, 1250–1261 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Chen, W., Liang, Y.: New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 102, 72–77 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liang, Y., Chen, W.: A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids. Commun. Nonlinear Sci. Numer. Simulat. 56, 131–137 (2018)

    Article  MathSciNet  Google Scholar 

  15. Xiao, R., Guo, J., Tian, C., Chen, W.: Modeling enthalpy relaxation using the Mittag–Leffler function. J. Non-Cryst. Solids 465, 17–25 (2017)

    Article  Google Scholar 

  16. Iyiola, O.S., Asante-Asamani, E.O., Wade, B.A.: A real distinct poles rational approximation of generalized Mittag–Leffler functions and their inverses: applications to fractional calculus. J. Comput. Appl. Math. 330, 307–317 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, W., Chen, W., Liang, Y., Weberszpil, J.: A Spatial structural derivative model for ultraslow diffusion. arXiv:1705.01542 (2017)

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 207. North-Holland Mathematics Studies, Elsevier, Amsterdam (2006)

  19. Podlubny, I.: Fractional Differential Equation, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

  20. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Katugampola, U.N.: New fractional integral unifying six existing fractional integrals. arxiv:1612.08596 (2016)

  22. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Katugampola, U.N.: A new fractional derivative with classical properties. arXiv:1410.6535

  25. J. Vanterler da C. Sousa, E. Capelas de Oliveira, \({M}\)-fractional derivative with classical properties (2017) (submitted)

  26. J. Vanterler da C. Sousa, E. Capelas de Oliveira, A new truncated \({M}\)-fractional derivative unifying some fractional derivatives with classical properties (2017) (submitted)

  27. Teodoro, G.S.: (2014) Fractional Calculus and Mittag–Leffler Functions (in Portuguese), Master Thesis. IMECC, Campinas

  28. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, vol. 54, pp. 223–276. Springer, New York (2008)

    Google Scholar 

  29. Kumar, D., Kumar, S.: (2014) Fractional calculus of the generalized Mittag–Leffler type function. Inter. Scholarly Research Notices (2014)

  30. Dorrego, G.A., Cerutti, R.A.: The \(k\)-Mittag–Leffler function. Int. J. Contemp. Math. Sci. 7, 705–716 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Nisar, K.S., Eata, A.F., Al-Dhaifallah, M., Choi, J.: Fractional calculus of generalized \(k\)-Mittag–Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016, 304 (2016)

    Article  MathSciNet  Google Scholar 

  32. Gözütok, N.Y., Gözütok, U.: Multivariable conformable fractional calculus. arXiv:1701.00616

  33. J. Vanterler da C. Sousa, E. Capelas de Oliveira, Multivariable truncated \({\cal{V}}\)-fractional derivative (2017) (to be submitted for publication)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

This work was completed with the support of our TeX-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Oliveira, E.C.d. Mittag–Leffler Functions and the Truncated \({\mathcal {V}}\)-fractional Derivative. Mediterr. J. Math. 14, 244 (2017). https://doi.org/10.1007/s00009-017-1046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1046-z

Mathematics Subject Classification

Keywords

Navigation